These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
435 related items for PubMed ID: 30715602
1. Toward the construction of a technology platform for chemicals production from methanol: D-lactic acid production from methanol by an engineered yeast Pichia pastoris. Yamada R, Ogura K, Kimoto Y, Ogino H. World J Microbiol Biotechnol; 2019 Feb 04; 35(2):37. PubMed ID: 30715602 [Abstract] [Full Text] [Related]
2. Novel homologous lactate transporter improves L-lactic acid production from glycerol in recombinant strains of Pichia pastoris. de Lima PB, Mulder KC, Melo NT, Carvalho LS, Menino GS, Mulinari E, de Castro VH, Dos Reis TF, Goldman GH, Magalhães BS, Parachin NS. Microb Cell Fact; 2016 Sep 15; 15(1):158. PubMed ID: 27634467 [Abstract] [Full Text] [Related]
3. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures. Jordà J, Jouhten P, Cámara E, Maaheimo H, Albiol J, Ferrer P. Microb Cell Fact; 2012 May 08; 11():57. PubMed ID: 22569166 [Abstract] [Full Text] [Related]
4. Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z. Appl Microbiol Biotechnol; 2014 Apr 08; 98(8):3539-52. PubMed ID: 24419799 [Abstract] [Full Text] [Related]
5. Pichia pastoris Mut(S) strains are prone to misincorporation of O-methyl-L-homoserine at methionine residues when methanol is used as the sole carbon source. Schotte P, Dewerte I, De Groeve M, De Keyser S, De Brabandere V, Stanssens P. Microb Cell Fact; 2016 Jun 07; 15():98. PubMed ID: 27267127 [Abstract] [Full Text] [Related]
6. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Park HJ, Bae JH, Ko HJ, Lee SH, Sung BH, Han JI, Sohn JH. Biotechnol Bioeng; 2018 Sep 07; 115(9):2232-2242. PubMed ID: 29896854 [Abstract] [Full Text] [Related]
7. Transcriptomic Analysis of the Influence of Methanol Assimilation on the Gene Expression in the Recombinant Pichia pastoris Producing Hirudin Variant 3. Li T, Ma J, Xu Z, Wang S, Wang N, Shao S, Yang W, Huang L, Liu Y. Genes (Basel); 2019 Aug 12; 10(8):. PubMed ID: 31409011 [Abstract] [Full Text] [Related]
8. Enhanced production of Thermomyces lanuginosus lipase in Pichia pastoris via genetic and fermentation strategies. Fang Z, Xu L, Pan D, Jiao L, Liu Z, Yan Y. J Ind Microbiol Biotechnol; 2014 Oct 12; 41(10):1541-51. PubMed ID: 25074457 [Abstract] [Full Text] [Related]
9. Methylotrophic yeast Pichia pastoris as a chassis organism for polyketide synthesis via the full citrinin biosynthetic pathway. Xue Y, Kong C, Shen W, Bai C, Ren Y, Zhou X, Zhang Y, Cai M. J Biotechnol; 2017 Jan 20; 242():64-72. PubMed ID: 27913218 [Abstract] [Full Text] [Related]
10. Transcriptional Downregulation of Methanol Metabolism Key Genes During Yeast Death in Engineered Pichia pastoris. Wang C, Jiang W, Yu C, Xia J. Biotechnol J; 2024 Oct 20; 19(10):e202400328. PubMed ID: 39407414 [Abstract] [Full Text] [Related]
11. Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Celik E, Calik P, Oliver SG. Yeast; 2009 Sep 20; 26(9):473-84. PubMed ID: 19575480 [Abstract] [Full Text] [Related]
12. High-level extracellular production of Rhizopus oryzae lipase in Pichia pastoris via a strategy combining optimization of gene-copy number with co-expression of ERAD-related proteins. Jiao L, Zhou Q, Su Z, Xu L, Yan Y. Protein Expr Purif; 2018 Jul 20; 147():1-12. PubMed ID: 29452270 [Abstract] [Full Text] [Related]
13. Transcriptional analysis of impacts of glycerol transporter 1 on methanol and glycerol metabolism in Pichia pastoris. Li X, Yang Y, Zhan C, Zhang Z, Liu X, Liu H, Bai Z. FEMS Yeast Res; 2018 Feb 01; 18(1):. PubMed ID: 29092019 [Abstract] [Full Text] [Related]
14. Efficient 13C/15N double labeling of the avirulence protein AVR4 in a methanol-utilizing strain (Mut+) of Pichia pastoris. van den Burg HA, de Wit PJ, Vervoort J. J Biomol NMR; 2001 Jul 01; 20(3):251-61. PubMed ID: 11519748 [Abstract] [Full Text] [Related]
15. Economical production of Pichia pastoris single cell protein from methanol at industrial pilot scale. Meng J, Liu S, Gao L, Hong K, Liu S, Wu X. Microb Cell Fact; 2023 Sep 28; 22(1):198. PubMed ID: 37770920 [Abstract] [Full Text] [Related]
16. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Hellwig S, Emde F, Raven NP, Henke M, van Der Logt P, Fischer R. Biotechnol Bioeng; 2001 Aug 20; 74(4):344-52. PubMed ID: 11410859 [Abstract] [Full Text] [Related]
17. Identification of major ADH genes in ethanol metabolism of Pichia pastoris. Karaoğlan M, Erden-Karaoğlan F, Yılmaz S, İnan M. Yeast; 2020 Feb 20; 37(2):227-236. PubMed ID: 31603243 [Abstract] [Full Text] [Related]
18. Deletion of the GCW13 gene derepresses Gap1-dependent uptake of amino acids in Pichia pastoris grown on methanol as the sole carbon source. Zou C, Wang P, Liang S, Han S, Zheng S, Lin Y. Biochem Biophys Res Commun; 2018 Jun 18; 501(1):226-231. PubMed ID: 29733846 [Abstract] [Full Text] [Related]
19. Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. Chang CH, Hsiung HA, Hong KL, Huang CT. BMC Biotechnol; 2018 Dec 27; 18(1):81. PubMed ID: 30587177 [Abstract] [Full Text] [Related]
20. Trm1p, a Zn(II)₂Cys₆-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris. Sahu U, Krishna Rao K, Rangarajan PN. Biochem Biophys Res Commun; 2014 Aug 15; 451(1):158-64. PubMed ID: 25088995 [Abstract] [Full Text] [Related] Page: [Next] [New Search]