These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
180 related items for PubMed ID: 30721044
1. Kinetics and Catabolic Pathways of the Insecticide Chlorpyrifos, Annotation of the Degradation Genes, and Characterization of Enzymes TcpA and Fre in Cupriavidus nantongensis X1T. Fang L, Shi T, Chen Y, Wu X, Zhang C, Tang X, Li QX, Hua R. J Agric Food Chem; 2019 Feb 27; 67(8):2245-2254. PubMed ID: 30721044 [Abstract] [Full Text] [Related]
2. Rapid Biodegradation of the Organophosphorus Insecticide Chlorpyrifos by Cupriavidus nantongensis X1T. Shi T, Fang L, Qin H, Chen Y, Wu X, Hua R. Int J Environ Res Public Health; 2019 Nov 20; 16(23):. PubMed ID: 31756950 [Abstract] [Full Text] [Related]
5. Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Lu P, Li Q, Liu H, Feng Z, Yan X, Hong Q, Li S. Bioresour Technol; 2013 Jan 20; 127():337-42. PubMed ID: 23131657 [Abstract] [Full Text] [Related]
6. Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1. Fang LC, Chen YF, Zhou YL, Wang DS, Sun LN, Tang XY, Hua RM. J Biotechnol; 2016 Jun 10; 227():1-2. PubMed ID: 27063140 [Abstract] [Full Text] [Related]
9. Enantioselective Uptake Determines Degradation Selectivity of Chiral Profenofos in Cupriavidus nantongensis X1T. Fang L, Shi Q, Xu L, Shi T, Wu X, Li QX, Hua R. J Agric Food Chem; 2020 Jun 17; 68(24):6493-6501. PubMed ID: 32459959 [Abstract] [Full Text] [Related]
10. Functions of flavin reductase and quinone reductase in 2,4,6-trichlorophenol degradation by Cupriavidus necator JMP134. Belchik SM, Xun L. J Bacteriol; 2008 Mar 17; 190(5):1615-9. PubMed ID: 18165297 [Abstract] [Full Text] [Related]
11. Enantioselective degradation of the organophosphorus insecticide isocarbophos in Cupriavidus nantongensis X1T: Characteristics, enantioselective regulation, degradation pathways, and toxicity assessment. Fang L, Xu L, Zhang N, Shi Q, Shi T, Ma X, Wu X, Li QX, Hua R. J Hazard Mater; 2021 Sep 05; 417():126024. PubMed ID: 33992014 [Abstract] [Full Text] [Related]
12. Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. Wang D, Xue Q, Zhou X, Tang X, Hua R. J Basic Microbiol; 2015 Feb 05; 55(2):229-35. PubMed ID: 25470743 [Abstract] [Full Text] [Related]
13. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Louie TM, Webster CM, Xun L. J Bacteriol; 2002 Jul 05; 184(13):3492-500. PubMed ID: 12057943 [Abstract] [Full Text] [Related]
14. Efficient Knocking Out of the Organophosphorus Insecticides Degradation Gene opdB in Cupriavidus nantongensis X1T via CRISPR/Cas9 with Red System. Zhang Y, Geng Y, Li S, Shi T, Ma X, Hua R, Fang L. Int J Mol Sci; 2023 Mar 22; 24(6):. PubMed ID: 36983076 [Abstract] [Full Text] [Related]
15. Identification of two possible metabolic pathways responsible for the biodegradation of 3, 5, 6-trichloro-2-pyridinol in Micrococcus luteus ML. Yue C, Jia N, Lv X, Wang S. Biodegradation; 2023 Aug 22; 34(4):371-381. PubMed ID: 36879077 [Abstract] [Full Text] [Related]
16. Efficient biodegradation characteristics and detoxification pathway of organophosphorus insecticide profenofos via Cupriavidus nantongensis X1T and enzyme OpdB. Fang L, Zhou Y, Chen T, Geng Y, Li Z, Zha W, Shi T, Hua R. Sci Total Environ; 2023 Mar 01; 862():160782. PubMed ID: 36513234 [Abstract] [Full Text] [Related]
17. Genetic characterization of 2,4,6-trichlorophenol degradation in Cupriavidus necator JMP134. Sánchez MA, González B. Appl Environ Microbiol; 2007 May 01; 73(9):2769-76. PubMed ID: 17322325 [Abstract] [Full Text] [Related]
18. Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y. Biotechnol Lett; 2007 Oct 01; 29(10):1469-73. PubMed ID: 17609859 [Abstract] [Full Text] [Related]
19. Structural and catalytic differences between two FADH(2)-dependent monooxygenases: 2,4,5-TCP 4-monooxygenase (TftD) from Burkholderia cepacia AC1100 and 2,4,6-TCP 4-monooxygenase (TcpA) from Cupriavidus necator JMP134. Hayes RP, Webb BN, Subramanian AK, Nissen M, Popchock A, Xun L, Kang C. Int J Mol Sci; 2012 Oct 01; 13(8):9769-9784. PubMed ID: 22949829 [Abstract] [Full Text] [Related]
20. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil. Silambarasan S, Abraham J. J Basic Microbiol; 2014 Jan 01; 54(1):44-55. PubMed ID: 23553803 [Abstract] [Full Text] [Related] Page: [Next] [New Search]