These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 30724041
1. Impact of hemoglobin breakdown products in the spectral analysis of burn wounds using spatial frequency domain spectroscopy. Saager RB, Rowland RA, Baldado ML, Kennedy GT, Bernal NP, Ponticorvo A, Christy RJ, Durkin AJ. J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30724041 [Abstract] [Full Text] [Related]
2. Burn wound classification model using spatial frequency-domain imaging and machine learning. Rowland R, Ponticorvo A, Baldado M, Kennedy GT, Burmeister DM, Christy RJ, Bernal NP, Durkin AJ. J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31134769 [Abstract] [Full Text] [Related]
3. In vivo monitoring of hemoglobin derivatives in a rat thermal injury model using spectral diffuse reflectance imaging. Parvez MA, Yashiro K, Tsunoi Y, Saitoh D, Sato S, Nishidate I. Burns; 2024 Feb; 50(1):167-177. PubMed ID: 37821274 [Abstract] [Full Text] [Related]
5. In vivo visualization of burn depth in skin tissue of rats using hemoglobin parameters estimated by diffuse reflectance spectral imaging. Parvez MA, Yashiro K, Nagahama Y, Tsunoi Y, Saitoh D, Sato S, Nishidate I. J Biomed Opt; 2024 Feb; 29(2):026003. PubMed ID: 38361505 [Abstract] [Full Text] [Related]
6. Spatial frequency domain imaging: a quantitative, noninvasive tool for in vivo monitoring of burn wound and skin graft healing. Kennedy GT, Stone R, Kowalczewski AC, Rowland R, Chen JH, Baldado ML, Ponticorvo A, Bernal N, Christy RJ, Durkin AJ. J Biomed Opt; 2019 Jul; 24(7):1-9. PubMed ID: 31313538 [Abstract] [Full Text] [Related]
7. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity. Nguyen JQ, Crouzet C, Mai T, Riola K, Uchitel D, Liaw LH, Bernal N, Ponticorvo A, Choi B, Durkin AJ. J Biomed Opt; 2013 Jun; 18(6):66010. PubMed ID: 23764696 [Abstract] [Full Text] [Related]
8. Method using in vivo quantitative spectroscopy to guide design and optimization of low-cost, compact clinical imaging devices: emulation and evaluation of multispectral imaging systems. Saager RB, Baldado ML, Rowland RA, Kelly KM, Durkin AJ. J Biomed Opt; 2018 Apr; 23(4):1-12. PubMed ID: 29633609 [Abstract] [Full Text] [Related]
9. Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI). Ponticorvo A, Burmeister DM, Rowland R, Baldado M, Kennedy GT, Saager R, Bernal N, Choi B, Durkin AJ. Lasers Surg Med; 2017 Mar; 49(3):293-304. PubMed ID: 28220508 [Abstract] [Full Text] [Related]
11. Can spectral-spatial image segmentation be used to discriminate experimental burn wounds? Paluchowski LA, Nordgaard HB, Bjorgan A, Hov H, Berget SM, Randeberg LL. J Biomed Opt; 2016 Oct 01; 21(10):101413. PubMed ID: 27228458 [Abstract] [Full Text] [Related]
12. [Raman spectral study of nitrosyhemoglobin and several other hemoglobins]. Cen Y, Zhang R, Yao WH, Ma J, Chen JY. Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Mar 01; 25(3):405-8. PubMed ID: 16013318 [Abstract] [Full Text] [Related]
13. Early assessment of burn severity in human tissue ex vivo with multi-wavelength spatial frequency domain imaging. Poon C, Sunar U, Rohrbach DJ, Krishnamurthy S, Olsen T, Kent M, Weir NM, Simman R, Travers JB. Toxicol In Vitro; 2018 Oct 01; 52():251-254. PubMed ID: 29859991 [Abstract] [Full Text] [Related]
14. Noninvasive Techniques for the Determination of Burn Severity in Real Time. Burmeister DM, Cerna C, Becerra SC, Sloan M, Wilmink G, Christy RJ. J Burn Care Res; 2017 Oct 01; 38(1):e180-e191. PubMed ID: 27355653 [Abstract] [Full Text] [Related]
15. Utility of spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI) to non-invasively diagnose burn depth in a porcine model. Burmeister DM, Ponticorvo A, Yang B, Becerra SC, Choi B, Durkin AJ, Christy RJ. Burns; 2015 Sep 01; 41(6):1242-52. PubMed ID: 26138371 [Abstract] [Full Text] [Related]
16. Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period. Sowa MG, Leonardi L, Payette JR, Fish JS, Mantsch HH. Burns; 2001 May 01; 27(3):241-9. PubMed ID: 11311517 [Abstract] [Full Text] [Related]
17. Noncontact imaging of burn depth and extent in a porcine model using spatial frequency domain imaging. Mazhar A, Saggese S, Pollins AC, Cardwell NL, Nanney L, Cuccia DJ. J Biomed Opt; 2014 Aug 01; 19(8):086019. PubMed ID: 25147961 [Abstract] [Full Text] [Related]
18. Determination of Human Hemoglobin Derivatives. Attia AM, Ibrahim FA, Abd El-Latif NA, Aziz SW, Abdelmottaleb Moussa SA, Elalfy MS. Hemoglobin; 2015 Aug 01; 39(5):371-4. PubMed ID: 26193973 [Abstract] [Full Text] [Related]
19. Spectrophotometric quantitative analysis of the main hemoglobin derivatives. Adamov SA, Aleksandrova SA, Denisov AN, Mosur EY, Semikolenova NA. Biochemistry (Mosc); 1998 Oct 01; 63(10):1160-3. PubMed ID: 9864449 [Abstract] [Full Text] [Related]
20. Full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression. Wang P, Cao Y, Yin M, Li Y, Lv S, Huang L, Zhang D, Luo Y, Wu J. Rev Sci Instrum; 2019 Jun 01; 90(6):064103. PubMed ID: 31255006 [Abstract] [Full Text] [Related] Page: [Next] [New Search]