These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 30724199
1. Co-melting behaviour of sucrose, glucose & fructose. Wang Y, Truong T, Li H, Bhandari B. Food Chem; 2019 Mar 01; 275():292-298. PubMed ID: 30724199 [Abstract] [Full Text] [Related]
2. Can the thermodynamic melting temperature of sucrose, glucose, and fructose be measured using rapid-scanning differential scanning calorimetry (DSC)? Lee JW, Thomas LC, Schmidt SJ. J Agric Food Chem; 2011 Apr 13; 59(7):3306-10. PubMed ID: 21417276 [Abstract] [Full Text] [Related]
3. Melting behaviour of D-sucrose, D-glucose and D-fructose. Hurtta M, Pitkänen I, Knuutinen J. Carbohydr Res; 2004 Sep 13; 339(13):2267-73. PubMed ID: 15337455 [Abstract] [Full Text] [Related]
4. Comment on the melting and decomposition of sugars. Roos YH, Franks F, Karel M, Labuza TP, Levine H, Mathlouthi M, Reid D, Shalaev E, Slade L. J Agric Food Chem; 2012 Oct 17; 60(41):10359-62; author reply 10363-71. PubMed ID: 23016831 [No Abstract] [Full Text] [Related]
5. Dissolution of sucrose crystals in the anhydrous sorbitol melt. Bhandari BR, Roos YH. Carbohydr Res; 2003 Feb 07; 338(4):361-7. PubMed ID: 12559734 [Abstract] [Full Text] [Related]
6. Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). Lee JW, Thomas LC, Schmidt SJ. J Agric Food Chem; 2011 Jan 26; 59(2):684-701. PubMed ID: 21175199 [Abstract] [Full Text] [Related]
7. Glass transition study in model food systems prepared with mixtures of fructose, glucose, and sucrose. Saavedra-Leos MZ, Grajales-Lagunes A, González-García R, Toxqui-Terán A, Pérez-García SA, Abud-Archila MA, Ruiz-Cabrera MA. J Food Sci; 2012 May 26; 77(5):E118-26. PubMed ID: 23163938 [Abstract] [Full Text] [Related]
8. Enthalpy relaxation in binary amorphous mixtures containing sucrose. Shamblin SL, Zografi G. Pharm Res; 1998 Dec 26; 15(12):1828-34. PubMed ID: 9892465 [Abstract] [Full Text] [Related]
12. DSC study of sucrose melting. Beckett ST, Francesconi MG, Geary PM, Mackenzie G, Maulny AP. Carbohydr Res; 2006 Nov 06; 341(15):2591-9. PubMed ID: 16916498 [Abstract] [Full Text] [Related]
13. Formulation, lyophilization and solid-state properties of a pegylated protein. Mosharraf M, Malmberg M, Fransson J. Int J Pharm; 2007 May 24; 336(2):215-32. PubMed ID: 17207591 [Abstract] [Full Text] [Related]
16. Relative hydrophobicity/hydrophilicity of fructose, glucose, sucrose, and trehalose as probed by 1-propanol: a differential approach in solution thermodynamics. Koga Y, Nishikawa K, Westh P. J Phys Chem B; 2007 Dec 20; 111(50):13943-8. PubMed ID: 18031029 [Abstract] [Full Text] [Related]
17. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature. Golic M, Walsh K, Lawson P. Appl Spectrosc; 2003 Feb 20; 57(2):139-45. PubMed ID: 14610949 [Abstract] [Full Text] [Related]
19. Fragility of sugar melts. Liu J, Ren Z, Lin L, Li H, Jia R. Food Sci Technol Int; 2012 Feb 20; 18(1):73-80. PubMed ID: 22328122 [Abstract] [Full Text] [Related]