These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 30730133

  • 1. Graphene-Based Steganographically Aptasensing System for Information Computing, Encryption and Hiding, Fluorescence Sensing and in Vivo Imaging of Fish Pathogens.
    Zhu QY, Zhang FR, Du Y, Zhang XX, Lu JY, Yao QF, Huang WT, Ding XZ, Xia LQ.
    ACS Appl Mater Interfaces; 2019 Mar 06; 11(9):8904-8914. PubMed ID: 30730133
    [Abstract] [Full Text] [Related]

  • 2. Molecular 'email': Electrochemical aptasensing of fish pathogens, molecular information encoding, encryption and hiding applications.
    Lu JY, Jiang Q, Lei JJ, He YX, Huang WT.
    Anal Chim Acta; 2022 Nov 01; 1232():340483. PubMed ID: 36257750
    [Abstract] [Full Text] [Related]

  • 3. Graphene-Based Steganographic Aptasensor for Information Computing and Monitoring Toxins of Biofilm in Food.
    Wang Q, Yang Q, Wu W.
    Front Microbiol; 2019 Nov 01; 10():3139. PubMed ID: 32117086
    [Abstract] [Full Text] [Related]

  • 4. Fluorescent aptasensor based on aggregation-induced emission probe and graphene oxide.
    Li X, Ma K, Zhu S, Yao S, Liu Z, Xu B, Yang B, Tian W.
    Anal Chem; 2014 Jan 07; 86(1):298-303. PubMed ID: 24299305
    [Abstract] [Full Text] [Related]

  • 5. Graphene-based aptasensors: from molecule-interface interactions to sensor design and biomedical diagnostics.
    Wang L, Wu A, Wei G.
    Analyst; 2018 Mar 26; 143(7):1526-1543. PubMed ID: 29528071
    [Abstract] [Full Text] [Related]

  • 6. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.
    Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, Steele TW.
    Biosens Bioelectron; 2015 Feb 15; 64():373-85. PubMed ID: 25261843
    [Abstract] [Full Text] [Related]

  • 7. A general strategy to create RNA aptamer sensors using "regulated" graphene oxide adsorption.
    Song J, Lau PS, Liu M, Shuang S, Dong C, Li Y.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21806-12. PubMed ID: 24992732
    [Abstract] [Full Text] [Related]

  • 8. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues.
    Zhang FR, Lu JY, Yao QF, Zhu QY, Zhang XX, Huang WT, Xia LQ, Ding XZ.
    Analyst; 2019 Mar 11; 144(6):1881-1891. PubMed ID: 30785136
    [Abstract] [Full Text] [Related]

  • 9. Graphene-based aptamer logic gates and their application to multiplex detection.
    Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S.
    ACS Nano; 2012 Aug 28; 6(8):6659-66. PubMed ID: 22823159
    [Abstract] [Full Text] [Related]

  • 10. Highly tunable aptasensing microarrays with graphene oxide multilayers.
    Jung YK, Lee T, Shin E, Kim BS.
    Sci Rep; 2013 Nov 28; 3():3367. PubMed ID: 24284474
    [Abstract] [Full Text] [Related]

  • 11. Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection.
    Lu JY, Guo Z, Huang WT, Bao M, He B, Li G, Lei J, Li Y.
    Talanta; 2024 Jan 15; 267():125261. PubMed ID: 37801930
    [Abstract] [Full Text] [Related]

  • 12. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: application for logic gate operations.
    Liu X, Aizen R, Freeman R, Yehezkeli O, Willner I.
    ACS Nano; 2012 Apr 24; 6(4):3553-63. PubMed ID: 22404375
    [Abstract] [Full Text] [Related]

  • 13. Optical Graphene-Based Biosensor for Nucleic Acid Detection; Influence of Graphene Functionalization and Ionic Strength.
    Becheru DF, Vlăsceanu GM, Banciu A, Vasile E, Ioniţă M, Burns JS.
    Int J Mol Sci; 2018 Oct 19; 19(10):. PubMed ID: 30347651
    [Abstract] [Full Text] [Related]

  • 14. An efficient fluorescence resonance energy transfer system from quantum dots to graphene oxide nano sheets: Application in a photoluminescence aptasensing probe for the sensitive detection of diazinon.
    Arvand M, Mirroshandel AA.
    Food Chem; 2019 May 15; 280():115-122. PubMed ID: 30642476
    [Abstract] [Full Text] [Related]

  • 15. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction.
    Sun AL, Zhang YF, Sun GP, Wang XN, Tang D.
    Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001
    [Abstract] [Full Text] [Related]

  • 16. Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels.
    Loo AH, Bonanni A, Pumera M.
    Nanoscale; 2013 Jun 07; 5(11):4758-62. PubMed ID: 23604556
    [Abstract] [Full Text] [Related]

  • 17. Label-free bioassay with graphene oxide-based fluorescent aptasensors: A review.
    Ma K, Li X, Xu B, Tian W.
    Anal Chim Acta; 2021 Dec 15; 1188():338859. PubMed ID: 34794573
    [Abstract] [Full Text] [Related]

  • 18. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins.
    Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q.
    Anal Chem; 2012 Jul 17; 84(14):6263-70. PubMed ID: 22816786
    [Abstract] [Full Text] [Related]

  • 19. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G, Wang Y, He X, Wang K, Liu J, Du Y.
    Biosens Bioelectron; 2013 Jun 15; 44():57-63. PubMed ID: 23391707
    [Abstract] [Full Text] [Related]

  • 20. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification.
    Liu M, Song J, Shuang S, Dong C, Brennan JD, Li Y.
    ACS Nano; 2014 Jun 24; 8(6):5564-73. PubMed ID: 24857187
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.