These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


471 related items for PubMed ID: 30731151

  • 41. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil.
    Wlodarski K, Sawicki W, Haber K, Knapik J, Wojnarowska Z, Paluch M, Lepek P, Hawelek L, Tajber L.
    Eur J Pharm Biopharm; 2015 Aug; 94():106-15. PubMed ID: 25998701
    [Abstract] [Full Text] [Related]

  • 42. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization.
    Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS.
    AAPS J; 2021 May 17; 23(4):69. PubMed ID: 34002256
    [Abstract] [Full Text] [Related]

  • 43.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 44. Role of Surfactants on Release Performance of Amorphous Solid Dispersions of Ritonavir and Copovidone.
    Indulkar AS, Lou X, Zhang GGZ, Taylor LS.
    Pharm Res; 2022 Feb 17; 39(2):381-397. PubMed ID: 35169959
    [Abstract] [Full Text] [Related]

  • 45. How changes in molecular weight and PDI of a polymer in amorphous solid dispersions impact dissolution performance.
    Auch C, Harms M, Mäder K.
    Int J Pharm; 2019 Feb 10; 556():372-382. PubMed ID: 30553957
    [Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47. Inhibition of Liquid-Liquid Phase Separation for Breaking the Solubility Barrier of Amorphous Solid Dispersions to Improve Oral Absorption of Naftopidil.
    Fukiage M, Suzuki K, Matsuda M, Nishida Y, Oikawa M, Fujita T, Kawakami K.
    Pharmaceutics; 2022 Nov 30; 14(12):. PubMed ID: 36559158
    [Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. Mutual Impact of Phase Separation/Crystallization and Water Sorption in Amorphous Solid Dispersions.
    Luebbert C, Wessner M, Sadowski G.
    Mol Pharm; 2018 Feb 05; 15(2):669-678. PubMed ID: 29309155
    [Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52. Comparison of Amorphous Solid Dispersions of Spironolactone Prepared by Spray Drying and Electrospinning: The Influence of the Preparation Method on the Dissolution Properties.
    Szabó E, Záhonyi P, Brecska D, Galata DL, Mészáros LA, Madarász L, Csorba K, Vass P, Hirsch E, Szafraniec-Szczęsny J, Csontos I, Farkas A, Van denMooter G, Nagy ZK, Marosi G.
    Mol Pharm; 2021 Jan 04; 18(1):317-327. PubMed ID: 33301326
    [Abstract] [Full Text] [Related]

  • 53. The twofold advantage of the amorphous form as an oral drug delivery practice for lipophilic compounds: increased apparent solubility and drug flux through the intestinal membrane.
    Dahan A, Beig A, Ioffe-Dahan V, Agbaria R, Miller JM.
    AAPS J; 2013 Apr 04; 15(2):347-53. PubMed ID: 23242514
    [Abstract] [Full Text] [Related]

  • 54. Dissolution and Solubility Enhancement of the Highly Lipophilic Drug Phenytoin via Interaction with Poly(N-isopropylacrylamide-co-vinylpyrrolidone) Excipients.
    Widanapathirana L, Tale S, Reineke TM.
    Mol Pharm; 2015 Jul 06; 12(7):2537-43. PubMed ID: 26046484
    [Abstract] [Full Text] [Related]

  • 55. The influence of drug physical state on the dissolution enhancement of solid dispersions prepared via hot-melt extrusion: a case study using olanzapine.
    Pina MF, Zhao M, Pinto JF, Sousa JJ, Craig DQ.
    J Pharm Sci; 2014 Apr 06; 103(4):1214-23. PubMed ID: 24765654
    [Abstract] [Full Text] [Related]

  • 56. Miniaturized Measurement of Drug-Polymer Interactions via Viscosity Increase for Polymer Selection in Amorphous Solid Dispersions.
    Auch C, Harms M, Golitsyn Y, Reichert D, Mäder K.
    Mol Pharm; 2019 May 06; 16(5):2214-2225. PubMed ID: 30920843
    [Abstract] [Full Text] [Related]

  • 57. Combined Effects of Supersaturation Rates and Doses on the Kinetic-Solubility Profiles of Amorphous Solid Dispersions Based on Water-Insoluble Poly(2-hydroxyethyl methacrylate) Hydrogels.
    Schver GCRM, Lee PI.
    Mol Pharm; 2018 May 07; 15(5):2017-2026. PubMed ID: 29601723
    [Abstract] [Full Text] [Related]

  • 58. Tailoring supersaturation from amorphous solid dispersions.
    Li N, Taylor LS.
    J Control Release; 2018 Jun 10; 279():114-125. PubMed ID: 29654798
    [Abstract] [Full Text] [Related]

  • 59. Phase Behavior of Amorphous Solid Dispersions of Felodipine: Homogeneity and Drug-Polymer Interactions.
    Sarpal K, Delaney S, Zhang GGZ, Munson EJ.
    Mol Pharm; 2019 Dec 02; 16(12):4836-4851. PubMed ID: 31682129
    [Abstract] [Full Text] [Related]

  • 60. High drug loading nanosized amorphous solid dispersion (NASD) with enhanced in vitro solubility and permeability: Benchmarking conventional ASD.
    Andrews GP, Qian K, Jacobs E, Jones DS, Tian Y.
    Int J Pharm; 2023 Feb 05; 632():122551. PubMed ID: 36581107
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.