These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
186 related items for PubMed ID: 30736002
1. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information. Zeng M, Li M, Fei Z, Wu FX, Li Y, Pan Y, Wang J. IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002 [Abstract] [Full Text] [Related]
2. A deep learning framework for identifying essential proteins based on multiple biological information. Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. BMC Bioinformatics; 2022 Aug 04; 23(1):318. PubMed ID: 35927611 [Abstract] [Full Text] [Related]
3. DeepEP: a deep learning framework for identifying essential proteins. Zeng M, Li M, Wu FX, Li Y, Pan Y. BMC Bioinformatics; 2019 Dec 02; 20(Suppl 16):506. PubMed ID: 31787076 [Abstract] [Full Text] [Related]
4. DeepHE: Accurately predicting human essential genes based on deep learning. Zhang X, Xiao W, Xiao W. PLoS Comput Biol; 2020 Sep 02; 16(9):e1008229. PubMed ID: 32936825 [Abstract] [Full Text] [Related]
5. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data. Zhang W, Xu J, Zou X. IEEE/ACM Trans Comput Biol Bioinform; 2020 Sep 02; 17(6):2053-2061. PubMed ID: 31095490 [Abstract] [Full Text] [Related]
6. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks. Li M, Lu Y, Wang J, Wu FX, Pan Y. IEEE/ACM Trans Comput Biol Bioinform; 2015 Sep 02; 12(2):372-83. PubMed ID: 26357224 [Abstract] [Full Text] [Related]
7. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. Li M, Li W, Wu FX, Pan Y, Wang J. J Theor Biol; 2018 Jun 14; 447():65-73. PubMed ID: 29571709 [Abstract] [Full Text] [Related]
8. ACDMBI: A deep learning model based on community division and multi-source biological information fusion predicts essential proteins. Lu P, Tian J. Comput Biol Chem; 2024 Oct 14; 112():108115. PubMed ID: 38865861 [Abstract] [Full Text] [Related]
9. Temporal Protein Complex Identification Based on Dynamic Heterogeneous Protein Information Network Representation Learning. Li Z, Zhang Y, Zhou P. IEEE/ACM Trans Comput Biol Bioinform; 2024 Oct 14; 21(5):1154-1164. PubMed ID: 38190662 [Abstract] [Full Text] [Related]
10. A new method for the discovery of essential proteins. Zhang X, Xu J, Xiao WX. PLoS One; 2013 Oct 14; 8(3):e58763. PubMed ID: 23555595 [Abstract] [Full Text] [Related]
11. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes. Luo J, Qi Y. PLoS One; 2015 Oct 14; 10(6):e0131418. PubMed ID: 26125187 [Abstract] [Full Text] [Related]
12. A Deep Learning Framework for Gene Ontology Annotations With Sequence- and Network-Based Information. Zhang F, Song H, Zeng M, Wu FX, Li Y, Pan Y, Li M. IEEE/ACM Trans Comput Biol Bioinform; 2021 Oct 14; 18(6):2208-2217. PubMed ID: 31985440 [Abstract] [Full Text] [Related]
13. Identification of essential proteins from weighted protein-protein interaction networks. Li M, Wang JX, Wang H, Pan Y. J Bioinform Comput Biol; 2013 Jun 14; 11(3):1341002. PubMed ID: 23796179 [Abstract] [Full Text] [Related]
14. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks. Xu B, Guan J, Wang Y, Wang Z. IEEE/ACM Trans Comput Biol Bioinform; 2019 Jun 14; 16(2):377-387. PubMed ID: 28504946 [Abstract] [Full Text] [Related]
15. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning. Du T, Liao L, Wu CH, Sun B. Methods; 2016 Nov 01; 110():97-105. PubMed ID: 27282356 [Abstract] [Full Text] [Related]
16. Protein2Vec: Aligning Multiple PPI Networks with Representation Learning. Gao J, Tian L, Lv T, Wang J, Song B, Hu X. IEEE/ACM Trans Comput Biol Bioinform; 2021 Nov 01; 18(1):240-249. PubMed ID: 31478867 [Abstract] [Full Text] [Related]
17. Protein Complexes Detection Based on Semi-Supervised Network Embedding Model. Zhu J, Zheng Z, Yang M, Fung GPC, Huang C. IEEE/ACM Trans Comput Biol Bioinform; 2021 Nov 01; 18(2):797-803. PubMed ID: 31581089 [Abstract] [Full Text] [Related]
18. An integrated method for identifying essential proteins from multiplex network model of protein-protein interactions. Athira K, Gopakumar G. J Bioinform Comput Biol; 2020 Aug 01; 18(4):2050020. PubMed ID: 32795133 [Abstract] [Full Text] [Related]
19. A novel essential protein identification method based on PPI networks and gene expression data. Zhong J, Tang C, Peng W, Xie M, Sun Y, Tang Q, Xiao Q, Yang J. BMC Bioinformatics; 2021 May 13; 22(1):248. PubMed ID: 33985429 [Abstract] [Full Text] [Related]
20. Disease gene classification with metagraph representations. Kircali Ata S, Fang Y, Wu M, Li XL, Xiao X. Methods; 2017 Dec 01; 131():83-92. PubMed ID: 28694066 [Abstract] [Full Text] [Related] Page: [Next] [New Search]