These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 30737734

  • 1. Established and Upcoming Yeast Expression Systems.
    Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P.
    Methods Mol Biol; 2019; 1923():1-74. PubMed ID: 30737734
    [Abstract] [Full Text] [Related]

  • 2. Yeast Expression Systems: Overview and Recent Advances.
    Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M.
    Mol Biotechnol; 2019 May; 61(5):365-384. PubMed ID: 30805909
    [Abstract] [Full Text] [Related]

  • 3. Production of recombinant proteins by yeast cells.
    Celik E, Calık P.
    Biotechnol Adv; 2012 May; 30(5):1108-18. PubMed ID: 21964262
    [Abstract] [Full Text] [Related]

  • 4. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison.
    Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I.
    FEMS Yeast Res; 2005 Nov; 5(11):1079-96. PubMed ID: 16144775
    [Abstract] [Full Text] [Related]

  • 5. Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae.
    Reiser J, Glumoff V, Kälin M, Ochsner U.
    Adv Biochem Eng Biotechnol; 1990 Nov; 43():75-102. PubMed ID: 2291442
    [Abstract] [Full Text] [Related]

  • 6. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts.
    Patra P, Das M, Kundu P, Ghosh A.
    Biotechnol Adv; 2021 Nov; 47():107695. PubMed ID: 33465474
    [Abstract] [Full Text] [Related]

  • 7. Non-conventional yeasts as hosts for heterologous protein production.
    Domínguez A, Fermiñán E, Sánchez M, González FJ, Pérez-Campo FM, García S, Herrero AB, San Vicente A, Cabello J, Prado M, Iglesias FJ, Choupina A, Burguillo FJ, Fernández-Lago L, López MC.
    Int Microbiol; 1998 Jun; 1(2):131-42. PubMed ID: 10943351
    [Abstract] [Full Text] [Related]

  • 8. Selection of the Optimal Yeast Host for the Synthesis of Recombinant Enzymes.
    Bischoff F, Giersberg M, Matthes F, Schwalenberg T, Worch S, Kunze G.
    Methods Mol Biol; 2019 Jun; 1923():113-132. PubMed ID: 30737737
    [Abstract] [Full Text] [Related]

  • 9. Non-conventional yeast cell factories for sustainable bioprocesses.
    Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Karthika Bahuleyan A, Aneesh EM, Pandey A.
    FEMS Microbiol Lett; 2018 Nov 01; 365(21):. PubMed ID: 30212856
    [Abstract] [Full Text] [Related]

  • 10. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.
    Wagner JM, Alper HS.
    Fungal Genet Biol; 2016 Apr 01; 89():126-136. PubMed ID: 26701310
    [Abstract] [Full Text] [Related]

  • 11. Genetic manipulation of non-conventional yeasts by conventional and non-conventional methods.
    Spencer JF, Spencer DM, Reynolds N.
    J Basic Microbiol; 1988 Apr 01; 28(5):321-33. PubMed ID: 3068351
    [Abstract] [Full Text] [Related]

  • 12. Yeast systems for the commercial production of heterologous proteins.
    Buckholz RG, Gleeson MA.
    Biotechnology (N Y); 1991 Nov 01; 9(11):1067-72. PubMed ID: 1367623
    [Abstract] [Full Text] [Related]

  • 13. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects.
    Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T.
    Biotechnol Adv; 2018 Nov 01; 36(3):641-665. PubMed ID: 29331410
    [Abstract] [Full Text] [Related]

  • 14. Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica.
    Müller S, Sandal T, Kamp-Hansen P, Dalbøge H.
    Yeast; 1998 Oct 01; 14(14):1267-83. PubMed ID: 9802206
    [Abstract] [Full Text] [Related]

  • 15. A wide-range integrative yeast expression vector system based on Arxula adeninivorans-derived elements.
    Terentiev Y, Pico AH, Böer E, Wartmann T, Klabunde J, Breuer U, Babel W, Suckow M, Gellissen G, Kunze G.
    J Ind Microbiol Biotechnol; 2004 Jun 01; 31(5):223-8. PubMed ID: 15175929
    [Abstract] [Full Text] [Related]

  • 16. From yeast genetics to biotechnology.
    Maráz A.
    Acta Microbiol Immunol Hung; 2002 Jun 01; 49(4):483-91. PubMed ID: 12512257
    [Abstract] [Full Text] [Related]

  • 17. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up.
    Madhavan A, Arun KB, Sindhu R, Krishnamoorthy J, Reshmy R, Sirohi R, Pugazhendi A, Awasthi MK, Szakacs G, Binod P.
    Microb Cell Fact; 2021 Jun 30; 20(1):124. PubMed ID: 34193127
    [Abstract] [Full Text] [Related]

  • 18. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts.
    Fernández FJ, López-Estepa M, Querol-García J, Vega MC.
    Adv Exp Med Biol; 2016 Jun 30; 896():137-53. PubMed ID: 27165323
    [Abstract] [Full Text] [Related]

  • 19. Application of a wide-range yeast vector (CoMed) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts.
    Steinborn G, Böer E, Scholz A, Tag K, Kunze G, Gellissen G.
    Microb Cell Fact; 2006 Nov 14; 5():33. PubMed ID: 17105649
    [Abstract] [Full Text] [Related]

  • 20. The expression of recombinant proteins in yeasts.
    Sudbery PE.
    Curr Opin Biotechnol; 1996 Oct 14; 7(5):517-24. PubMed ID: 8939625
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.