These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
211 related items for PubMed ID: 30742167
1. Water super-repellent behavior of semicircular micro/nanostructured surfaces. Tie L, Guo Z, Liang Y, Liu W. Nanoscale; 2019 Feb 21; 11(8):3725-3732. PubMed ID: 30742167 [Abstract] [Full Text] [Related]
3. Nanostructures in superhydrophobic Ti6Al4V hierarchical surfaces control wetting state transitions. Shen Y, Tao J, Tao H, Chen S, Pan L, Wang T. Soft Matter; 2015 May 21; 11(19):3806-11. PubMed ID: 25855128 [Abstract] [Full Text] [Related]
4. Thermodynamic analysis on wetting behavior of hierarchical structured superhydrophobic surfaces. Liu HH, Zhang HY, Li W. Langmuir; 2011 May 17; 27(10):6260-7. PubMed ID: 21495711 [Abstract] [Full Text] [Related]
7. The mechanism and universal scaling law of the contact line friction for the Cassie-state droplets on nanostructured ultrahydrophobic surfaces. Zhao L, Cheng J. Nanoscale; 2018 Apr 05; 10(14):6426-6436. PubMed ID: 29564459 [Abstract] [Full Text] [Related]
8. In situ wetting state transition on micro- and nanostructured surfaces at high temperature. Wang J, Liu M, Ma R, Wang Q, Jiang L. ACS Appl Mater Interfaces; 2014 Sep 10; 6(17):15198-208. PubMed ID: 25141234 [Abstract] [Full Text] [Related]
12. Wetting States and Departure Diameters of Bubbles on Micro-/Nanostructured Surfaces. Li J, Gong S, Zhang L, Cheng P, Ma X, Hong F. Langmuir; 2022 Mar 15; 38(10):3180-3188. PubMed ID: 35240036 [Abstract] [Full Text] [Related]
13. Controlling states of water droplets on nanostructured surfaces by design. Zhu C, Gao Y, Huang Y, Li H, Meng S, Francisco JS, Zeng XC. Nanoscale; 2017 Nov 30; 9(46):18240-18245. PubMed ID: 29104978 [Abstract] [Full Text] [Related]
14. Optimal design of superhydrophobic surfaces using a paraboloid microtexture. Tie L, Guo Z, Li W. J Colloid Interface Sci; 2014 Dec 15; 436():19-28. PubMed ID: 25265581 [Abstract] [Full Text] [Related]
15. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Seo D, Lee C, Nam Y. Langmuir; 2014 Dec 30; 30(51):15468-76. PubMed ID: 25466626 [Abstract] [Full Text] [Related]
16. Progress in understanding wetting transitions on rough surfaces. Bormashenko E. Adv Colloid Interface Sci; 2015 Aug 30; 222():92-103. PubMed ID: 24594103 [Abstract] [Full Text] [Related]
17. Wetting State Transition of Laser Direct Writing Aluminum Surface Based on Coupling Effect of Micro/Nanoscale Characteristics. Wan Q, Hu X, Yu T, Guo P, Wang J, Shi H, Chen S. Langmuir; 2024 Jul 23; 40(29):15196-15204. PubMed ID: 39007690 [Abstract] [Full Text] [Related]
18. Effects of Surface Wettability on the Dewetting Performance of Hydrophobic Surfaces. Li J, Wang W, Mei X, Pan A. ACS Omega; 2020 Nov 10; 5(44):28776-28783. PubMed ID: 33195931 [Abstract] [Full Text] [Related]
19. Wettability of Reentrant Surfaces: A Global Energy Approach. Silvestrini M, Brito C. Langmuir; 2017 Oct 31; 33(43):12535-12545. PubMed ID: 28985080 [Abstract] [Full Text] [Related]
20. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Huovinen E, Hirvi J, Suvanto M, Pakkanen TA. Langmuir; 2012 Oct 16; 28(41):14747-55. PubMed ID: 23009694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]