These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 30771198
21. Cycles of satellite and transposon evolution in Arabidopsis centromeres. Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandáková T, Gorringe N, Tock AJ, Holland D, Fritschi K, Habring A, Lanz C, Patel C, Schlegel T, Collenberg M, Mielke M, Nordborg M, Roux F, Shirsekar G, Alonso-Blanco C, Lysak MA, Novikova PY, Bousios A, Weigel D, Henderson IR. Nature; 2023 Jun; 618(7965):557-565. PubMed ID: 37198485 [Abstract] [Full Text] [Related]
22. Centromere Repeats: Hidden Gems of the Genome. Hartley G, O'Neill RJ. Genes (Basel); 2019 Mar 16; 10(3):. PubMed ID: 30884847 [Abstract] [Full Text] [Related]
23. Centromere reference models for human chromosomes X and Y satellite arrays. Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ. Genome Res; 2014 Apr 16; 24(4):697-707. PubMed ID: 24501022 [Abstract] [Full Text] [Related]
31. Dark Matter of Primate Genomes: Satellite DNA Repeats and Their Evolutionary Dynamics. Ahmad SF, Singchat W, Jehangir M, Suntronpong A, Panthum T, Malaivijitnond S, Srikulnath K. Cells; 2020 Dec 18; 9(12):. PubMed ID: 33352976 [Abstract] [Full Text] [Related]
32. Evolution of long centromeres in fire ants. Huang YC, Lee CC, Kao CY, Chang NC, Lin CC, Shoemaker D, Wang J. BMC Evol Biol; 2016 Sep 15; 16():189. PubMed ID: 27628313 [Abstract] [Full Text] [Related]
33. Long-time evolution and highly dynamic satellite DNA in leptodactylid and hylodid frogs. Vittorazzi SE, Lourenço LB, Recco-Pimentel SM. BMC Genet; 2014 Oct 15; 15():111. PubMed ID: 25316286 [Abstract] [Full Text] [Related]
34. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Samoluk SS, Robledo G, Bertioli D, Seijo JG. Mol Genet Genomics; 2017 Apr 15; 292(2):283-296. PubMed ID: 27838847 [Abstract] [Full Text] [Related]
35. The Structure of Simple Satellite Variation in the Human Genome and Its Correlation With Centromere Ancestry. Said I, Barbash DA, Clark AG. Genome Biol Evol; 2024 Aug 05; 16(8):. PubMed ID: 39018452 [Abstract] [Full Text] [Related]
36. Haplotypes spanning centromeric regions reveal persistence of large blocks of archaic DNA. Langley SA, Miga KH, Karpen GH, Langley CH. Elife; 2019 Jun 25; 8():. PubMed ID: 31237235 [Abstract] [Full Text] [Related]
37. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Elife; 2019 Sep 16; 8():. PubMed ID: 31524597 [Abstract] [Full Text] [Related]
38. The formation and evolution of centromeric satellite repeats in Saccharum species. Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K. Plant J; 2021 May 16; 106(3):616-629. PubMed ID: 33547688 [Abstract] [Full Text] [Related]
39. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Gong Z, Wu Y, Koblízková A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novák P, Buell CR, Macas J, Jiang J. Plant Cell; 2012 Sep 16; 24(9):3559-74. PubMed ID: 22968715 [Abstract] [Full Text] [Related]
40. Satellite DNA at the Centromere is Dispensable for Segregation Fidelity. Roberti A, Bensi M, Mazzagatti A, Piras FM, Nergadze SG, Giulotto E, Raimondi E. Genes (Basel); 2019 Jun 20; 10(6):. PubMed ID: 31226862 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]