These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


646 related items for PubMed ID: 30776560

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S, Rana V, Kumar A, Maiti SK.
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil.
    Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z.
    J Sci Food Agric; 2012 Jan 30; 92(2):336-42. PubMed ID: 21935956
    [Abstract] [Full Text] [Related]

  • 8. The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation.
    Fumagalli P, Comolli R, Ferrè C, Ghiani A, Gentili R, Citterio S.
    J Environ Manage; 2014 Dec 01; 145():35-42. PubMed ID: 24992047
    [Abstract] [Full Text] [Related]

  • 9. Phytoaccumulation of Heavy Metals in Natural Vegetation at the Municipal Wastewater Site in Abbottabad, Pakistan.
    Irshad M, Ruqia B, Hussain Z.
    Int J Phytoremediation; 2015 Dec 01; 17(12):1269-73. PubMed ID: 26366840
    [Abstract] [Full Text] [Related]

  • 10. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H.
    J Environ Manage; 2015 Jun 01; 156():62-9. PubMed ID: 25796039
    [Abstract] [Full Text] [Related]

  • 11. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field.
    Bidar G, Pruvot C, Garçon G, Verdin A, Shirali P, Douay F.
    Environ Sci Pollut Res Int; 2009 Jan 01; 16(1):42-53. PubMed ID: 18594892
    [Abstract] [Full Text] [Related]

  • 12. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization.
    Razmi B, Ghasemi-Fasaei R, Ronaghi A, Mostowfizadeh-Ghalamfarsa R.
    Ecotoxicol Environ Saf; 2021 Jan 01; 207():111315. PubMed ID: 32947213
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse.
    Usman K, Al-Ghouti MA, Abu-Dieyeh MH.
    Sci Rep; 2019 Apr 04; 9(1):5658. PubMed ID: 30948781
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Evaluation of phytoremediation capability of French marigold (Tagetes patula) and African marigold (Tagetes erecta) under heavy metals contaminated soils.
    Biswal B, Singh SK, Patra A, Mohapatra KK.
    Int J Phytoremediation; 2022 Apr 04; 24(9):945-954. PubMed ID: 34634952
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.