These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 30784795

  • 1. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots.
    Simón-Grao S, Nieves M, Martínez-Nicolás JJ, Alfosea-Simón M, Cámara-Zapata JM, Fernández-Zapata JC, García-Sánchez F.
    Ecotoxicol Environ Saf; 2019 May 30; 173():322-330. PubMed ID: 30784795
    [Abstract] [Full Text] [Related]

  • 2. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance.
    Navarro JM, Pérez-Tornero O, Morte A.
    J Plant Physiol; 2014 Jan 01; 171(1):76-85. PubMed ID: 23859560
    [Abstract] [Full Text] [Related]

  • 3. Response of three citrus genotypes used as rootstocks grown under boron excess conditions.
    Simón-Grao S, Nieves M, Martínez-Nicolás JJ, Cámara-Zapata JM, Alfosea-Simón M, García-Sánchez F.
    Ecotoxicol Environ Saf; 2018 Sep 15; 159():10-19. PubMed ID: 29730402
    [Abstract] [Full Text] [Related]

  • 4. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress.
    He F, Zhang H, Tang M.
    Mycorrhiza; 2016 May 15; 26(4):311-23. PubMed ID: 26590998
    [Abstract] [Full Text] [Related]

  • 5. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress.
    Wu QS, Xia RX, Zou YN.
    J Plant Physiol; 2006 Nov 15; 163(11):1101-10. PubMed ID: 17032615
    [Abstract] [Full Text] [Related]

  • 6. Mycorrhiza alters the profile of root hairs in trifoliate orange.
    Wu QS, Liu CY, Zhang DJ, Zou YN, He XH, Wu QH.
    Mycorrhiza; 2016 Apr 15; 26(3):237-47. PubMed ID: 26499883
    [Abstract] [Full Text] [Related]

  • 7. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi.
    Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X.
    Ecotoxicol Environ Saf; 2019 Dec 30; 186():109744. PubMed ID: 31627093
    [Abstract] [Full Text] [Related]

  • 8. Mycorrhizal effectiveness in Citrus macrophylla at low phosphorus fertilization.
    Navarro JM, Morte A.
    J Plant Physiol; 2019 Jan 30; 232():301-310. PubMed ID: 30551095
    [Abstract] [Full Text] [Related]

  • 9. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.
    Wu QS, Xia RX.
    J Plant Physiol; 2006 Mar 30; 163(4):417-25. PubMed ID: 16455355
    [Abstract] [Full Text] [Related]

  • 10. Arbuscular Mycorrhizal Symbiosis with Arundo donax Decreases Root Respiration and Increases Both Photosynthesis and Plant Biomass Accumulation.
    Romero-Munar A, Del-Saz NF, Ribas-Carbó M, Flexas J, Baraza E, Florez-Sarasa I, Fernie AR, Gulías J.
    Plant Cell Environ; 2017 Jul 30; 40(7):1115-1126. PubMed ID: 28060998
    [Abstract] [Full Text] [Related]

  • 11. Transcriptome responses in wheat roots to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Li M, Wang R, Tian H, Gao Y.
    Mycorrhiza; 2018 Nov 30; 28(8):747-759. PubMed ID: 30251133
    [Abstract] [Full Text] [Related]

  • 12. Tolerance of Mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions.
    Abbaspour H, Saeidi-Sar S, Afshari H, Abdel-Wahhab MA.
    J Plant Physiol; 2012 May 01; 169(7):704-9. PubMed ID: 22418429
    [Abstract] [Full Text] [Related]

  • 13. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants--A soil microcosm experiment.
    Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X.
    Chemosphere; 2016 Mar 01; 147():88-97. PubMed ID: 26761602
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress.
    Porcel R, Ruiz-Lozano JM.
    J Exp Bot; 2004 Aug 01; 55(403):1743-50. PubMed ID: 15208335
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress.
    Sheng M, Tang M, Zhang F, Huang Y.
    Mycorrhiza; 2011 Jul 01; 21(5):423-430. PubMed ID: 21191619
    [Abstract] [Full Text] [Related]

  • 18. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.
    Ravnskov S, Larsen J.
    Plant Biol (Stuttg); 2016 Sep 01; 18(5):816-23. PubMed ID: 27094118
    [Abstract] [Full Text] [Related]

  • 19. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi.
    Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E.
    Science; 2017 Jun 16; 356(6343):1172-1175. PubMed ID: 28596307
    [Abstract] [Full Text] [Related]

  • 20. Modified distribution in the polyphenolic profile of rosemary leaves induced by plant inoculation with an arbuscular mycorrhizal fungus.
    Seró R, Núñez N, Núñez O, Camprubí A, Grases JM, Saurina J, Moyano E, Calvet C.
    J Sci Food Agric; 2019 Apr 16; 99(6):2966-2973. PubMed ID: 30478939
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.