These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 30785238

  • 41. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in Chilo suppressalis (Walker).
    Xu L, Zhao J, Sun Y, Xu D, Xu G, Xu X, Zhang Y, Huang S, Han Z, Gu Z.
    Pest Manag Sci; 2019 Mar; 75(3):718-725. PubMed ID: 30101471
    [Abstract] [Full Text] [Related]

  • 42. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/Cas9 genome modification in Drosophila.
    Douris V, Papapostolou KM, Ilias A, Roditakis E, Kounadi S, Riga M, Nauen R, Vontas J.
    Insect Biochem Mol Biol; 2017 Aug; 87():127-135. PubMed ID: 28669775
    [Abstract] [Full Text] [Related]

  • 43. Selection for resistance, reversion towards susceptibility and synergism of chlorantraniliprole and spinetoram in obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera: Tortricidae).
    Sial AA, Brunner JF.
    Pest Manag Sci; 2012 Mar; 68(3):462-8. PubMed ID: 22052720
    [Abstract] [Full Text] [Related]

  • 44. Susceptibility of Helicoverpa zea (Lepidoptera: Noctuidae) Neonates to Diamide Insecticides in the Midsouthern and Southeastern United States.
    Adams A, Gore J, Catchot A, Musser F, Cook D, Krishnan N, Irby T.
    J Econ Entomol; 2016 Oct; 109(5):2205-9. PubMed ID: 27524821
    [Abstract] [Full Text] [Related]

  • 45. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella.
    Rinkevich FD, Chen M, Shelton AM, Scott JG.
    Invert Neurosci; 2010 Nov; 10(1):25-33. PubMed ID: 20499126
    [Abstract] [Full Text] [Related]

  • 46. Assessment of resistance risk in obliquebanded leafroller (Lepidoptera: Tortricidae) to the reduced-risk insecticides chlorantraniliprole and spinetoram.
    Sial AA, Brunner JF.
    J Econ Entomol; 2010 Aug; 103(4):1378-85. PubMed ID: 20857751
    [Abstract] [Full Text] [Related]

  • 47. Insecticide resistance monitoring of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) and its mechanism to chlorantraniliprole.
    Sun Y, Liu ST, Ling Y, Wang L, Ni H, Guo D, Dong BB, Huang Q, Long LP, Zhang S, Wu SF, Gao CF.
    Pest Manag Sci; 2023 Sep; 79(9):3290-3299. PubMed ID: 37127919
    [Abstract] [Full Text] [Related]

  • 48. Knockin of the G275E mutation of the nicotinic acetylcholine receptor (nAChR) α6 confers high levels of resistance to spinosyns in Spodoptera exigua.
    Zuo YY, Xue YX, Wang ZY, Ren X, Aioub AAA, Wu YD, Yang YH, Hu ZN.
    Insect Sci; 2022 Apr; 29(2):478-486. PubMed ID: 33998150
    [Abstract] [Full Text] [Related]

  • 49. Role of Enterococcus mundtii in gut of the tomato leaf miner (Tuta absoluta) to detoxification of Chlorantraniliprole.
    Chen Y, Chen Y, Zhang Y, Sun Z, Li Y, Ding J, Zhang G, Du E, Zi X, Tian C, Zhao W, Gui F.
    Pestic Biochem Physiol; 2024 Sep; 204():106060. PubMed ID: 39277378
    [Abstract] [Full Text] [Related]

  • 50. Susceptibility of Choristoneura rosaceana (Lepidoptera: Tortricidae) to two new reduced-risk insecticides.
    Sial AA, Brunner JF, Doerr MD.
    J Econ Entomol; 2010 Feb; 103(1):140-6. PubMed ID: 20214379
    [Abstract] [Full Text] [Related]

  • 51. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.).
    Guo L, Liang P, Zhou X, Gao X.
    Sci Rep; 2014 Nov 07; 4():6924. PubMed ID: 25377064
    [Abstract] [Full Text] [Related]

  • 52. Evidence-based insecticide resistance in South American tomato leaf miner, Phthorimaea absoluta (Meyrick) under laboratory selection.
    Prasannakumar NR, Jyothi N, Prasadbabu K, Ramkumar G, Asokan R, Saroja S, Sridhar V.
    Bull Entomol Res; 2023 Jun 07; 113(3):419-429. PubMed ID: 36920057
    [Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55. Residual activity of spinosad applied as a soil drench to tomato seedlings for control of Tuta absoluta.
    Erasmus R, van den Berg J, van Rensburg PJ, du Plessis H.
    Pest Manag Sci; 2023 May 07; 79(5):1860-1867. PubMed ID: 36655285
    [Abstract] [Full Text] [Related]

  • 56. Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil.
    Okuma DM, Bernardi D, Horikoshi RJ, Bernardi O, Silva AP, Omoto C.
    Pest Manag Sci; 2018 Jun 07; 74(6):1441-1448. PubMed ID: 29239512
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Truncated transcripts of nicotinic acetylcholine subunit gene Bdα6 are associated with spinosad resistance in Bactrocera dorsalis.
    Hsu JC, Feng HT, Wu WJ, Geib SM, Mao CH, Vontas J.
    Insect Biochem Mol Biol; 2012 Oct 07; 42(10):806-15. PubMed ID: 22898623
    [Abstract] [Full Text] [Related]

  • 60. Chlorantraniliprole/lambda-cyhalothrin, a new insecticide mixture to control Tuta absoluta and Spodoptera littoralis in tomato.
    Fanigliulo A, Mancino O, Fanti P, Crescenzi A.
    Commun Agric Appl Biol Sci; 2012 Oct 07; 77(4):677-84. PubMed ID: 23885437
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.