These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 30785342
1. A Fast Parallel K-Modes Algorithm for Clustering Nucleotide Sequences to Predict Translation Initiation Sites. Castro GT, Zárate LE, Nobre CN, Freitas HC. J Comput Biol; 2019 May; 26(5):442-456. PubMed ID: 30785342 [No Abstract] [Full Text] [Related]
2. NMF-mGPU: non-negative matrix factorization on multi-GPU systems. Mejía-Roa E, Tabas-Madrid D, Setoain J, García C, Tirado F, Pascual-Montano A. BMC Bioinformatics; 2015 Feb 13; 16():43. PubMed ID: 25887585 [Abstract] [Full Text] [Related]
3. GPUDePiCt: A Parallel Implementation of a Clustering Algorithm for Computing Degenerate Primers on Graphics Processing Units. Cickovski T, Flor T, Irving-Sachs G, Novikov P, Parda J, Narasimhan G. IEEE/ACM Trans Comput Biol Bioinform; 2015 Feb 13; 12(2):445-54. PubMed ID: 26357230 [Abstract] [Full Text] [Related]
4. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering. Suzuki S, Kakuta M, Ishida T, Akiyama Y. PLoS One; 2016 Feb 13; 11(8):e0157338. PubMed ID: 27482905 [Abstract] [Full Text] [Related]
5. Transductive learning as an alternative to translation initiation site identification. Nunes Pinto CL, Nobre CN, Zárate LE. BMC Bioinformatics; 2017 Feb 02; 18(1):81. PubMed ID: 28152994 [Abstract] [Full Text] [Related]
6. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations. Ho T, Oh SR, Kim H. PLoS One; 2017 Feb 02; 12(10):e0186251. PubMed ID: 29016700 [Abstract] [Full Text] [Related]
7. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications. D'Angelo G, Rampone S. BMC Bioinformatics; 2014 Feb 02; 15 Suppl 5(Suppl 5):S2. PubMed ID: 25077818 [Abstract] [Full Text] [Related]
8. Massive exploration of perturbed conditions of the blood coagulation cascade through GPU parallelization. Cazzaniga P, Nobile MS, Besozzi D, Bellini M, Mauri G. Biomed Res Int; 2014 Feb 02; 2014():863298. PubMed ID: 25025072 [Abstract] [Full Text] [Related]
9. Accelerating reaction-diffusion simulations with general-purpose graphics processing units. Vigelius M, Lane A, Meyer B. Bioinformatics; 2011 Jan 15; 27(2):288-90. PubMed ID: 21062761 [Abstract] [Full Text] [Related]
11. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format. Bustamam A, Burrage K, Hamilton NA. IEEE/ACM Trans Comput Biol Bioinform; 2012 Jan 15; 9(3):679-92. PubMed ID: 21483031 [Abstract] [Full Text] [Related]
12. Fast parallel tandem mass spectral library searching using GPU hardware acceleration. Baumgardner LA, Shanmugam AK, Lam H, Eng JK, Martin DB. J Proteome Res; 2011 Jun 03; 10(6):2882-8. PubMed ID: 21545112 [Abstract] [Full Text] [Related]
15. GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs. Arefin AS, Riveros C, Berretta R, Moscato P. PLoS One; 2012 Jun 03; 7(8):e44000. PubMed ID: 22937144 [Abstract] [Full Text] [Related]
16. Accelerating large-scale protein structure alignments with graphics processing units. Pang B, Zhao N, Becchi M, Korkin D, Shyu CR. BMC Res Notes; 2012 Feb 22; 5():116. PubMed ID: 22357132 [Abstract] [Full Text] [Related]
17. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy. Samant SS, Xia J, Muyan-Ozcelik P, Owens JD. Med Phys; 2008 Aug 22; 35(8):3546-53. PubMed ID: 18777915 [Abstract] [Full Text] [Related]
18. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform. Salavert Torres J, Blanquer Espert I, Domínguez AT, Hernández García V, Medina Castelló I, Tárraga Giménez J, Dopazo Blázquez J. IEEE/ACM Trans Comput Biol Bioinform; 2012 Aug 22; 9(4):1245-56. PubMed ID: 22450827 [Abstract] [Full Text] [Related]
19. Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA. Silva LM, Teixeira FC, Ortega JM, Zárate LE, Nobre CN. BMC Genomics; 2011 Dec 22; 12 Suppl 4(Suppl 4):S9. PubMed ID: 22369295 [Abstract] [Full Text] [Related]
20. Translation initiation start prediction in human cDNAs with high accuracy. Hatzigeorgiou AG. Bioinformatics; 2002 Feb 22; 18(2):343-50. PubMed ID: 11847092 [Abstract] [Full Text] [Related] Page: [Next] [New Search]