These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 30785396

  • 41. Coincidental Occurrence of Schnyder Corneal Dystrophy and Posterior Polymorphous Corneal Dystrophy Type 3.
    Dudakova L, Skalicka P, Davidson AE, Liskova P.
    Cornea; 2019 Jun; 38(6):758-760. PubMed ID: 30950897
    [Abstract] [Full Text] [Related]

  • 42. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.
    Nakagawa K, Sawada N, Hirota Y, Uchino Y, Suhara Y, Hasegawa T, Amizuka N, Okamoto T, Tsugawa N, Kamao M, Funahashi N, Okano T.
    PLoS One; 2014 Jun; 9(8):e104078. PubMed ID: 25127365
    [Abstract] [Full Text] [Related]

  • 43. Role of UBIAD1 in Intracellular Cholesterol Metabolism and Vascular Cell Calcification.
    Liu S, Guo W, Han X, Dai W, Diao Z, Liu W.
    PLoS One; 2016 Jun; 11(2):e0149639. PubMed ID: 26890002
    [Abstract] [Full Text] [Related]

  • 44. Identification of mutations in UBIAD1 following exclusion of coding mutations in the chromosome 1p36 locus for Schnyder crystalline corneal dystrophy.
    Yellore VS, Khan MA, Bourla N, Rayner SA, Chen MC, Sonmez B, Momi RS, Sampat KM, Gorin MB, Aldave AJ.
    Mol Vis; 2007 Sep 24; 13():1777-82. PubMed ID: 17960116
    [Abstract] [Full Text] [Related]

  • 45. A mutation in the UBIAD1 gene in a Han Chinese family with Schnyder corneal dystrophy.
    Du C, Li Y, Dai L, Gong L, Han C.
    Mol Vis; 2011 Sep 24; 17():2685-92. PubMed ID: 22065921
    [Abstract] [Full Text] [Related]

  • 46. Functional characterization of the vitamin K2 biosynthetic enzyme UBIAD1.
    Hirota Y, Nakagawa K, Sawada N, Okuda N, Suhara Y, Uchino Y, Kimoto T, Funahashi N, Kamao M, Tsugawa N, Okano T.
    PLoS One; 2015 Sep 24; 10(4):e0125737. PubMed ID: 25874989
    [Abstract] [Full Text] [Related]

  • 47. Immunological evidence for eight spans in the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase: implications for enzyme degradation in the endoplasmic reticulum.
    Roitelman J, Olender EH, Bar-Nun S, Dunn WA, Simoni RD.
    J Cell Biol; 1992 Jun 24; 117(5):959-73. PubMed ID: 1374417
    [Abstract] [Full Text] [Related]

  • 48. Mitochondrial damage and cholesterol storage in human hepatocellular carcinoma cells with silencing of UBIAD1 gene expression.
    Morales CR, Grigoryeva LS, Pan X, Bruno L, Hickson G, Ngo MH, McMaster CR, Samuels ME, Pshezhetsky AV.
    Mol Genet Metab Rep; 2014 Jun 24; 1():407-411. PubMed ID: 27896114
    [Abstract] [Full Text] [Related]

  • 49. Phenotype-genotype correlation in patients with Schnyder corneal dystrophy.
    Nowinska AK, Wylegala E, Teper S, Lyssek-Boron A, Aragona P, Roszkowska AM, Micali A, Pisani A, Puzzolo D.
    Cornea; 2014 May 24; 33(5):497-503. PubMed ID: 24608252
    [Abstract] [Full Text] [Related]

  • 50. Ubiquitin-mediated regulation of sterol homeostasis.
    van den Boomen DJH, Volkmar N, Lehner PJ.
    Curr Opin Cell Biol; 2020 Aug 24; 65():103-111. PubMed ID: 32580085
    [Abstract] [Full Text] [Related]

  • 51. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).
    Sharpe LJ, Brown AJ.
    J Biol Chem; 2013 Jun 28; 288(26):18707-15. PubMed ID: 23696639
    [Abstract] [Full Text] [Related]

  • 52. Luciferase-based HMG-CoA reductase degradation assay for activity and selectivity profiling of oxy(lano)sterols.
    Sagimori I, Yoshioka H, Hashimoto Y, Ohgane K.
    Bioorg Med Chem; 2020 Feb 01; 28(3):115298. PubMed ID: 31902650
    [Abstract] [Full Text] [Related]

  • 53. Differential use of E2 ubiquitin conjugating enzymes for regulated degradation of the rate-limiting enzymes HMGCR and SQLE in cholesterol biosynthesis.
    Tan JME, Cook ECL, van den Berg M, Scheij S, Zelcer N, Loregger A.
    Atherosclerosis; 2019 Feb 01; 281():137-142. PubMed ID: 30658189
    [Abstract] [Full Text] [Related]

  • 54. Panstromal Schnyder corneal dystrophy. A clinical pathologic report with quantitative analysis of corneal lipid composition.
    McCarthy M, Innis S, Dubord P, White V.
    Ophthalmology; 1994 May 01; 101(5):895-901. PubMed ID: 8190477
    [Abstract] [Full Text] [Related]

  • 55. UBIAD1 suppresses the proliferation of bladder carcinoma cells by regulating H-Ras intracellular trafficking via interaction with the C-terminal domain of H-Ras.
    Xu Z, Duan F, Lu H, Abdulkadhim Dragh M, Xia Y, Liang H, Hong L.
    Cell Death Dis; 2018 Dec 05; 9(12):1170. PubMed ID: 30518913
    [Abstract] [Full Text] [Related]

  • 56. Membrane Protein Quantity Control at the Endoplasmic Reticulum.
    Printsev I, Curiel D, Carraway KL.
    J Membr Biol; 2017 Aug 05; 250(4):379-392. PubMed ID: 27743014
    [Abstract] [Full Text] [Related]

  • 57. Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase.
    Shearer AG, Hampton RY.
    J Biol Chem; 2004 Jan 02; 279(1):188-96. PubMed ID: 14570925
    [Abstract] [Full Text] [Related]

  • 58. UBIAD1-mediated vitamin K2 synthesis is required for vascular endothelial cell survival and development.
    Hegarty JM, Yang H, Chi NC.
    Development; 2013 Apr 02; 140(8):1713-9. PubMed ID: 23533172
    [Abstract] [Full Text] [Related]

  • 59. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation.
    Gardner RG, Shearer AG, Hampton RY.
    Mol Cell Biol; 2001 Jul 02; 21(13):4276-91. PubMed ID: 11390656
    [Abstract] [Full Text] [Related]

  • 60. Bisphosphonate esters interact with HMG-CoA reductase membrane domain to induce its degradation.
    Toyota Y, Yoshioka H, Sagimori I, Hashimoto Y, Ohgane K.
    Bioorg Med Chem; 2020 Jul 15; 28(14):115576. PubMed ID: 32616181
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.