These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
415 related items for PubMed ID: 30790413
21. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Orphan VJ, Hinrichs KU, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, Delong EF. Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650 [Abstract] [Full Text] [Related]
22. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Lazar CS, Dinasquet J, L'Haridon S, Pignet P, Toffin L. Antonie Van Leeuwenhoek; 2011 Nov; 100(4):639-53. PubMed ID: 21751028 [Abstract] [Full Text] [Related]
23. A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. Håvelsrud OE, Haverkamp TH, Kristensen T, Jakobsen KS, Rike AG. BMC Microbiol; 2011 Oct 04; 11():221. PubMed ID: 21970369 [Abstract] [Full Text] [Related]
24. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Wankel SD, Adams MM, Johnston DT, Hansel CM, Joye SB, Girguis PR. Environ Microbiol; 2012 Oct 04; 14(10):2726-40. PubMed ID: 22827909 [Abstract] [Full Text] [Related]
25. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor. Timmers PH, Gieteling J, Widjaja-Greefkes HC, Plugge CM, Stams AJ, Lens PN, Meulepas RJ. Appl Environ Microbiol; 2015 Feb 04; 81(4):1286-96. PubMed ID: 25501484 [Abstract] [Full Text] [Related]
26. Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction. Bhattarai S, Cassarini C, Lens PNL. Microbiol Mol Biol Rev; 2019 Aug 21; 83(3):. PubMed ID: 31366606 [Abstract] [Full Text] [Related]
27. A distinct freshwater-adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan. Takeuchi M, Yoshioka H, Seo Y, Tanabe S, Tamaki H, Kamagata Y, Takahashi HA, Igari S, Mayumi D, Sakata S. Environ Microbiol; 2011 Dec 21; 13(12):3206-18. PubMed ID: 21651687 [Abstract] [Full Text] [Related]
28. Gene expression and ultrastructure of meso- and thermophilic methanotrophic consortia. Krukenberg V, Riedel D, Gruber-Vodicka HR, Buttigieg PL, Tegetmeyer HE, Boetius A, Wegener G. Environ Microbiol; 2018 May 21; 20(5):1651-1666. PubMed ID: 29468803 [Abstract] [Full Text] [Related]
29. Expanding anaerobic alkane metabolism in the domain of Archaea. Wang Y, Wegener G, Hou J, Wang F, Xiao X. Nat Microbiol; 2019 Apr 21; 4(4):595-602. PubMed ID: 30833728 [Abstract] [Full Text] [Related]
30. Genomic Insights into Niche Partitioning across Sediment Depth among Anaerobic Methane-Oxidizing Archaea in Global Methane Seeps. Chen J, Li Y, Zhong C, Xu Z, Lu G, Jing H, Liu H. mSystems; 2023 Apr 27; 8(2):e0117922. PubMed ID: 36927099 [Abstract] [Full Text] [Related]
31. Metabolic Capabilities of Microorganisms Involved in and Associated with the Anaerobic Oxidation of Methane. Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. Front Microbiol; 2016 Apr 27; 7():46. PubMed ID: 26870011 [Abstract] [Full Text] [Related]
32. A Reduced F420-Dependent Nitrite Reductase in an Anaerobic Methanotrophic Archaeon. Heryakusuma C, Susanti D, Yu H, Li Z, Purwantini E, Hettich RL, Orphan VJ, Mukhopadhyay B. J Bacteriol; 2022 Jul 19; 204(7):e0007822. PubMed ID: 35695516 [Abstract] [Full Text] [Related]
33. Integrated metagenomic and metaproteomic analyses of an ANME-1-dominated community in marine cold seep sediments. Stokke R, Roalkvam I, Lanzen A, Haflidason H, Steen IH. Environ Microbiol; 2012 May 19; 14(5):1333-46. PubMed ID: 22404914 [Abstract] [Full Text] [Related]
34. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K, Treude T, Boetius A, Krüger M. Environ Microbiol; 2005 Jan 19; 7(1):98-106. PubMed ID: 15643940 [Abstract] [Full Text] [Related]
35. Nitrate-based niche differentiation by distinct sulfate-reducing bacteria involved in the anaerobic oxidation of methane. Green-Saxena A, Dekas AE, Dalleska NF, Orphan VJ. ISME J; 2014 Jan 19; 8(1):150-63. PubMed ID: 24008326 [Abstract] [Full Text] [Related]
36. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. Niu M, Fan X, Zhuang G, Liang Q, Wang F. FEMS Microbiol Ecol; 2017 Sep 01; 93(9):. PubMed ID: 28934399 [Abstract] [Full Text] [Related]
37. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor. Girguis PR, Cozen AE, DeLong EF. Appl Environ Microbiol; 2005 Jul 01; 71(7):3725-33. PubMed ID: 16000782 [Abstract] [Full Text] [Related]
38. Evolutionary diversification of methanotrophic ANME-1 archaea and their expansive virome. Laso-Pérez R, Wu F, Crémière A, Speth DR, Magyar JS, Zhao K, Krupovic M, Orphan VJ. Nat Microbiol; 2023 Feb 01; 8(2):231-245. PubMed ID: 36658397 [Abstract] [Full Text] [Related]
39. Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers. Lever MA, Teske AP. Appl Environ Microbiol; 2015 Feb 01; 81(4):1426-41. PubMed ID: 25527539 [Abstract] [Full Text] [Related]
40. Lateral Gene Transfer Drives Metabolic Flexibility in the Anaerobic Methane-Oxidizing Archaeal Family Methanoperedenaceae. Leu AO, McIlroy SJ, Ye J, Parks DH, Orphan VJ, Tyson GW. mBio; 2020 Jun 30; 11(3):. PubMed ID: 32605988 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]