These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
462 related items for PubMed ID: 30802660
1. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Huang Y, Chen H, Reinfelder JR, Liang X, Sun C, Liu C, Li F, Yi J. Sci Total Environ; 2019 May 20; 666():445-460. PubMed ID: 30802660 [Abstract] [Full Text] [Related]
2. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. BMC Plant Biol; 2017 Nov 07; 17(1):194. PubMed ID: 29115926 [Abstract] [Full Text] [Related]
3. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L, Zhao M, Ge M, Zhu S, Cheng B, Li X. Ecotoxicol Environ Saf; 2019 Dec 30; 186():109744. PubMed ID: 31627093 [Abstract] [Full Text] [Related]
5. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization. Zhang M, Liu X, Yuan L, Wu K, Duan J, Wang X, Yang L. Plant Physiol Biochem; 2012 Jan 30; 50(1):79-86. PubMed ID: 21855360 [Abstract] [Full Text] [Related]
13. Phytochelatin Synthase has Contrasting Effects on Cadmium and Arsenic Accumulation in Rice Grains. Uraguchi S, Tanaka N, Hofmann C, Abiko K, Ohkama-Ohtsu N, Weber M, Kamiya T, Sone Y, Nakamura R, Takanezawa Y, Kiyono M, Fujiwara T, Clemens S. Plant Cell Physiol; 2017 Oct 01; 58(10):1730-1742. PubMed ID: 29016913 [Abstract] [Full Text] [Related]
14. Measuring the damage of heavy metal cadmium in rice seedlings by SRAP analysis combined with physiological and biochemical parameters. Zhang X, Chen H, Jiang H, Lu W, Pan J, Qian Q, Xue D. J Sci Food Agric; 2015 Aug 30; 95(11):2292-8. PubMed ID: 25359308 [Abstract] [Full Text] [Related]
15. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.). Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J. PLoS One; 2016 Aug 30; 11(1):e0146242. PubMed ID: 26752408 [Abstract] [Full Text] [Related]
16. Zinc induced regulation of PCR1 gene for cadmium stress resistance in rice roots. Kandhol N, Rai P, Pandey S, Singh S, Sharma S, Corpas FJ, Singh VP, Tripathi DK. Plant Sci; 2023 Dec 30; 337():111783. PubMed ID: 37421983 [Abstract] [Full Text] [Related]
17. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene OsPCS2 involved in mitigation of cadmium and arsenic stresses. Das N, Bhattacharya S, Bhattacharyya S, Maiti MK. Plant Mol Biol; 2017 May 30; 94(1-2):167-183. PubMed ID: 28283922 [Abstract] [Full Text] [Related]
18. Selenate simultaneously alleviated cadmium and arsenic accumulation in rice (Oryza sativa L.) via regulating transport genes. Huang S, Wang Q, Qi H, Liu Z, Tao Y, Fan Y, Wang Q, Li H, Wan Y. Environ Pollut; 2024 Oct 15; 359():124725. PubMed ID: 39142427 [Abstract] [Full Text] [Related]
20. Assessing the interactive effects of microplastics and acid rain on cadmium toxicity in rice seedlings: Insights from physiological and transcriptomic analyses. Xie J, Zheng S, Wei H, Shi Z, Liu Z, Zhang J. Sci Total Environ; 2024 Nov 20; 952():175533. PubMed ID: 39155013 [Abstract] [Full Text] [Related] Page: [Next] [New Search]