These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 3081042

  • 1. An accurate and sensitive assay of [14C]octanoate oxidation and its application on tissue homogenates and fibroblasts.
    Veerkamp JH, van Moerkerk HT, Bakkeren JA.
    Biochim Biophys Acta; 1986 Mar 21; 876(1):133-7. PubMed ID: 3081042
    [Abstract] [Full Text] [Related]

  • 2. 14CO2 production is no adequate measure of [14C]fatty acid oxidation.
    Veerkamp JH, van Moerkerk TB, Glatz JF, Zuurveld JG, Jacobs AE, Wagenmakers AJ.
    Biochem Med Metab Biol; 1986 Jun 21; 35(3):248-59. PubMed ID: 3087394
    [Abstract] [Full Text] [Related]

  • 3. Peroxisomal fatty acid oxidation in rat and human tissues. Effect of nutritional state, clofibrate treatment and postnatal development in the rat.
    Veerkamp JH, van Moerkerk HT.
    Biochim Biophys Acta; 1986 Feb 12; 875(2):301-10. PubMed ID: 3942767
    [Abstract] [Full Text] [Related]

  • 4. Carnitine affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrum-deprived piglets: in vivo analysis of mechanisms involved based on CoA- and carnitine-ester profiles.
    van Kempen TA, Odle J.
    J Nutr; 1995 Feb 12; 125(2):238-50. PubMed ID: 7861251
    [Abstract] [Full Text] [Related]

  • 5. Incomplete palmitate oxidation in cell-free systems of rat and human muscles.
    Veerkamp JH, Van Moerkerk HT, Glatz JF, Van Hinsbergh VW.
    Biochim Biophys Acta; 1983 Oct 11; 753(3):399-410. PubMed ID: 6615873
    [Abstract] [Full Text] [Related]

  • 6. Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant.
    Dieuaide M, Couée I, Pradet A, Raymond P.
    Biochem J; 1993 Nov 15; 296 ( Pt 1)(Pt 1):199-207. PubMed ID: 8250843
    [Abstract] [Full Text] [Related]

  • 7. Effect of various agents and conditions on palmitate oxidation by homogenates of rat liver and rat and human skeletal muscle.
    Veerkamp JH, Van Moerkerk HT.
    Int J Biochem; 1985 Nov 15; 17(11):1163-9. PubMed ID: 4076518
    [Abstract] [Full Text] [Related]

  • 8. Metabolism of octanoate and its effect on glucose and palmitate utilization by isolated fat cells.
    Maragoudakis ME, Kalinsky HJ, Lennane J.
    Proc Soc Exp Biol Med; 1975 Mar 15; 148(3):606-10. PubMed ID: 236573
    [Abstract] [Full Text] [Related]

  • 9. Fatty acid metabolism in hearts containing elevated levels of CoA.
    Lopaschuk GD, Hansen CA, Neely JR.
    Am J Physiol; 1986 Mar 15; 250(3 Pt 2):H351-9. PubMed ID: 3953832
    [Abstract] [Full Text] [Related]

  • 10. Skeletal muscle fatty acid oxidation during early postnatal development in the rat.
    Carroll JE, Shumate JB, Villadiego A, Choksi RM, Morse DP.
    Biol Neonate; 1983 Mar 15; 43(3-4):191-7. PubMed ID: 6222770
    [Abstract] [Full Text] [Related]

  • 11. Octanoate and palmitate beta-oxidation in human leukocytes: implications for the rapid diagnosis of fatty acid beta-oxidation disorders.
    Wanders RJ, Ijlst L, van Elk E, de Klerk JB, Przyrembel H.
    J Inherit Metab Dis; 1991 Mar 15; 14(3):317-20. PubMed ID: 1770782
    [No Abstract] [Full Text] [Related]

  • 12. Effect of norepinephrine on ketogenesis, fatty acid oxidation, and esterification in isolated rat hepatocytes.
    Oberhaensli RD, Schwendimann R, Keller U.
    Diabetes; 1985 Aug 15; 34(8):774-9. PubMed ID: 2862086
    [Abstract] [Full Text] [Related]

  • 13. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of the free acids and their carnitine esters on coenzyme A-dependent oxidations in rat liver mitochondria.
    Holland PC, Sherratt HS.
    Biochem J; 1973 Sep 15; 136(1):157-71. PubMed ID: 4772622
    [Abstract] [Full Text] [Related]

  • 14. Liberation of 14CO2 from 14C-fatty acids by riboflavin-deficient sucking rat pups: a study of 14C-Octanoate and 14C-palmitate oxidation in vivo.
    Patterson BE, Bates CJ.
    Int J Vitam Nutr Res; 1989 Sep 15; 59(3):293-9. PubMed ID: 2513284
    [Abstract] [Full Text] [Related]

  • 15. Palmitate oxidation in suspended skeletal muscle fibers from the rat.
    Zuurveld JG, Veerkamp JH.
    Biochim Biophys Acta; 1984 Oct 24; 796(1):34-41. PubMed ID: 6091770
    [Abstract] [Full Text] [Related]

  • 16. Acyl-CoA oxidase activity and peroxisomal fatty acid oxidation in rat tissues.
    Reubsaet FA, Veerkamp JH, Bukkens SG, Trijbels JM, Monnens LA.
    Biochim Biophys Acta; 1988 Feb 19; 958(3):434-42. PubMed ID: 3342250
    [Abstract] [Full Text] [Related]

  • 17. Oxidation of fatty acids in cultured fibroblasts: a model system for the detection and study of defects in oxidation.
    Saudubray JM, Coudé FX, Demaugre F, Johnson C, Gibson KM, Nyhan WL.
    Pediatr Res; 1982 Oct 19; 16(10):877-81. PubMed ID: 7145511
    [Abstract] [Full Text] [Related]

  • 18. Liberation of 14CO2 from [14C]adipic acid and [14C]octanoic acid by adult rats during riboflavin deficiency and its reversal.
    Bates CJ.
    Br J Nutr; 1990 May 19; 63(3):553-62. PubMed ID: 2116894
    [Abstract] [Full Text] [Related]

  • 19. On the capacity of the beta-oxidation of palmitate and palmitoyl-esters in rat liver mitochondria.
    Farstad M, Berge R.
    Acta Physiol Scand; 1978 Nov 19; 104(3):337-48. PubMed ID: 31061
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.