These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


288 related items for PubMed ID: 30814603

  • 1. An achiral ferromagnetic/chiral antiferromagnetic bilayer system leading to controllable size and density of skyrmions.
    Morvan FJ, Luo HB, Yang HX, Zhang X, Zhou Y, Zhao GP, Xia WX, Liu JP.
    Sci Rep; 2019 Feb 27; 9(1):2970. PubMed ID: 30814603
    [Abstract] [Full Text] [Related]

  • 2. Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe2.
    Feng D, Shen Z, Xue Y, Guan Z, Xiao R, Song C.
    Nanoscale; 2023 Jan 27; 15(4):1561-1567. PubMed ID: 36537877
    [Abstract] [Full Text] [Related]

  • 3. Overcoming the Limits of the Interfacial Dzyaloshinskii-Moriya Interaction by Antiferromagnetic Order in Multiferroic Heterostructures.
    Wang H, Dai Y, Liu Z, Xie Q, Liu C, Lin W, Liu L, Yang P, Wang J, Venkatesan TV, Chow GM, Tian H, Zhang Z, Chen J.
    Adv Mater; 2020 Apr 27; 32(14):e1904415. PubMed ID: 32090416
    [Abstract] [Full Text] [Related]

  • 4. Skyrmion-skyrmion interaction in a magnetic film.
    Capic D, Garanin DA, Chudnovsky EM.
    J Phys Condens Matter; 2020 Jul 17; 32(41):. PubMed ID: 32526724
    [Abstract] [Full Text] [Related]

  • 5. Zero-field magnetic skyrmions in exchange-biased ferromagnetic-antiferromagnetic bilayers.
    Pankratova M, Eriksson O, Bergman A.
    J Phys Condens Matter; 2024 Jun 26; 36(38):. PubMed ID: 38848725
    [Abstract] [Full Text] [Related]

  • 6. Room-Temperature Skyrmions in an Antiferromagnet-Based Heterostructure.
    Yu G, Jenkins A, Ma X, Razavi SA, He C, Yin G, Shao Q, He QL, Wu H, Li W, Jiang W, Han X, Li X, Bleszynski Jayich AC, Amiri PK, Wang KL.
    Nano Lett; 2018 Feb 14; 18(2):980-986. PubMed ID: 29271208
    [Abstract] [Full Text] [Related]

  • 7. Ferrimagnetic Skyrmions in Topological Insulator/Ferrimagnet Heterostructures.
    Wu H, Groß F, Dai B, Lujan D, Razavi SA, Zhang P, Liu Y, Sobotkiewich K, Förster J, Weigand M, Schütz G, Li X, Gräfe J, Wang KL.
    Adv Mater; 2020 Aug 14; 32(34):e2003380. PubMed ID: 32666575
    [Abstract] [Full Text] [Related]

  • 8. Robust skyrmion mediated reversal of ferromagnetic nanodots of 20 nm lateral dimension with high Ms and observable DMI.
    Rajib MM, Misba WA, Bhattacharya D, Atulasimha J.
    Sci Rep; 2021 Oct 22; 11(1):20914. PubMed ID: 34686742
    [Abstract] [Full Text] [Related]

  • 9. Ferroelectric Control of Magnetic Skyrmions in Two-Dimensional van der Waals Heterostructures.
    Huang K, Shao DF, Tsymbal EY.
    Nano Lett; 2022 Apr 27; 22(8):3349-3355. PubMed ID: 35380845
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Dynamically stabilized magnetic skyrmions.
    Zhou Y, Iacocca E, Awad AA, Dumas RK, Zhang FC, Braun HB, Åkerman J.
    Nat Commun; 2015 Sep 09; 6():8193. PubMed ID: 26351104
    [Abstract] [Full Text] [Related]

  • 15. Single Chiral Skyrmions in Ultrathin Magnetic Films.
    Aranda AR, Guslienko KY.
    Materials (Basel); 2018 Nov 11; 11(11):. PubMed ID: 30423873
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.