These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
154 related items for PubMed ID: 30814614
1. Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using C5-elongases and C50-cyclases in Escherichia coli. Li L, Furubayashi M, Wang S, Maoka T, Kawai-Noma S, Saito K, Umeno D. Sci Rep; 2019 Feb 27; 9(1):2982. PubMed ID: 30814614 [Abstract] [Full Text] [Related]
2. Biosynthetic pathway for γ-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. Netzer R, Stafsnes MH, Andreassen T, Goksøyr A, Bruheim P, Brautaset T. J Bacteriol; 2010 Nov 27; 192(21):5688-99. PubMed ID: 20802040 [Abstract] [Full Text] [Related]
3. Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Krubasik P, Kobayashi M, Sandmann G. Eur J Biochem; 2001 Jul 27; 268(13):3702-8. PubMed ID: 11432736 [Abstract] [Full Text] [Related]
5. Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum. Heider SA, Peters-Wendisch P, Netzer R, Stafnes M, Brautaset T, Wendisch VF. Appl Microbiol Biotechnol; 2014 Feb 27; 98(3):1223-35. PubMed ID: 24270893 [Abstract] [Full Text] [Related]
6. Construction of a Nonnatural C60 Carotenoid Biosynthetic Pathway. Li L, Furubayashi M, Hosoi T, Seki T, Otani Y, Kawai-Noma S, Saito K, Umeno D. ACS Synth Biol; 2019 Mar 15; 8(3):511-520. PubMed ID: 30689939 [Abstract] [Full Text] [Related]
14. Overexpression of the primary sigma factor gene sigA improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Taniguchi H, Henke NA, Heider SAE, Wendisch VF. Metab Eng Commun; 2017 Jun 15; 4():1-11. PubMed ID: 29142827 [Abstract] [Full Text] [Related]
15. Stereochemistry of beta-, gamma-, and epsilon-ring formation in bacterial C50. Swift IE, Milborrow BV. J Biol Chem; 1981 Nov 25; 256(22):11607-11. PubMed ID: 7028738 [Abstract] [Full Text] [Related]
16. Description of Microbacterium luteum sp. nov., Microbacterium cremeum sp. nov., and Microbacterium atlanticum sp. nov., three novel C50 carotenoid producing bacteria. Xie F, Niu S, Lin X, Pei S, Jiang L, Tian Y, Zhang G. J Microbiol; 2021 Oct 25; 59(10):886-897. PubMed ID: 34491524 [Abstract] [Full Text] [Related]
17. Utilization of an intermediate of the methylerythritol phosphate pathway, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate, as the prenyl donor substrate for various prenyltransferases. Hayashi Y, Ito T, Yoshimura T, Hemmi H. Biosci Biotechnol Biochem; 2018 Jun 25; 82(6):993-1002. PubMed ID: 29191109 [Abstract] [Full Text] [Related]
18. Detailed biosynthetic pathway to decaprenoxanthin diglucoside in Corynebacterium glutamicum and identification of novel intermediates. Krubasik P, Takaichi S, Maoka T, Kobayashi M, Masamoto K, Sandmann G. Arch Microbiol; 2001 Sep 25; 176(3):217-23. PubMed ID: 11511870 [Abstract] [Full Text] [Related]