These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


120 related items for PubMed ID: 30826336

  • 1. Aug-MIA-QSAR based strategy in bioactivity prediction of a series of flavonoid derivatives as HIV-1 inhibitors.
    Muthukumaran P, Rajiniraja M.
    J Theor Biol; 2019 May 21; 469():18-24. PubMed ID: 30826336
    [Abstract] [Full Text] [Related]

  • 2. MIA-QSAR based model for bioactivity prediction of flavonoid derivatives as acetylcholinesterase inhibitors.
    Muthukumaran P, Rajiniraja M.
    J Theor Biol; 2018 Dec 14; 459():103-110. PubMed ID: 30267791
    [Abstract] [Full Text] [Related]

  • 3. aug-MIA-QSAR modeling of antimicrobial activities and design of multi-target anilide derivatives.
    Nunes CA, Freitas MP.
    J Microbiol Methods; 2013 Sep 14; 94(3):217-20. PubMed ID: 23831437
    [Abstract] [Full Text] [Related]

  • 4. MIA-QSAR evaluation of a series of sulfonylurea herbicides.
    Bitencourt M, Freitas MP.
    Pest Manag Sci; 2008 Aug 14; 64(8):800-7. PubMed ID: 18338340
    [Abstract] [Full Text] [Related]

  • 5. Exploring MIA-QSARs' for antimalarial quinolon-4(1H)-imines.
    Duarte MH, Barigye SJ, Freitas MP.
    Comb Chem High Throughput Screen; 2015 Aug 14; 18(2):208-16. PubMed ID: 25543687
    [Abstract] [Full Text] [Related]

  • 6. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y, Li W, Du T, Hong Z, Lin J.
    Int J Mol Sci; 2019 Jul 22; 20(14):. PubMed ID: 31336592
    [Abstract] [Full Text] [Related]

  • 7. Non-Linear Quantitative Structure⁻Activity Relationships Modelling, Mechanistic Study and In-Silico Design of Flavonoids as Potent Antioxidants.
    Žuvela P, David J, Yang X, Huang D, Wong MW.
    Int J Mol Sci; 2019 May 10; 20(9):. PubMed ID: 31083440
    [Abstract] [Full Text] [Related]

  • 8. Structure-activity relationships for the anti-HIV activity of flavonoids.
    Olivero-Verbel J, Pacheco-Londoño L.
    J Chem Inf Comput Sci; 2002 May 10; 42(5):1241-6. PubMed ID: 12377014
    [Abstract] [Full Text] [Related]

  • 9. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking.
    Worachartcheewan A, Songtawee N, Siriwong S, Prachayasittikul S, Nantasenamat C, Prachayasittikul V.
    Med Chem; 2019 May 10; 15(4):328-340. PubMed ID: 30251609
    [Abstract] [Full Text] [Related]

  • 10. MIA-QSAR coupled to principal component analysis-adaptive neuro-fuzzy inference systems (PCA-ANFIS) for the modeling of the anti-HIV reverse transcriptase activities of TIBO derivatives.
    Goodarzi M, Freitas MP.
    Eur J Med Chem; 2010 Apr 10; 45(4):1352-8. PubMed ID: 20060625
    [Abstract] [Full Text] [Related]

  • 11. MIA-QSAR modelling of anti-HIV-1 activities of some 2-amino-6-arylsulfonylbenzonitriles and their thio and sulfinyl congeners.
    Freitas MP.
    Org Biomol Chem; 2006 Mar 21; 4(6):1154-9. PubMed ID: 16525561
    [Abstract] [Full Text] [Related]

  • 12. Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.
    Nirouei M, Ghasemi G, Abdolmaleki P, Tavakoli A, Shariati S.
    Indian J Biochem Biophys; 2012 Jun 21; 49(3):202-10. PubMed ID: 22803336
    [Abstract] [Full Text] [Related]

  • 13. A novel simple QSAR model for the prediction of anti-HIV activity using multiple linear regression analysis.
    Afantitis A, Melagraki G, Sarimveis H, Koutentis PA, Markopoulos J, Igglessi-Markopoulou O.
    Mol Divers; 2006 Aug 21; 10(3):405-14. PubMed ID: 16896545
    [Abstract] [Full Text] [Related]

  • 14. Bi- and multilinear PLS coupled to MIA-QSAR in the prediction of antifungal activities of some benzothiazole derivatives.
    Bitencourt M, Freitas MP.
    Med Chem; 2009 Jan 21; 5(1):79-86. PubMed ID: 19149653
    [Abstract] [Full Text] [Related]

  • 15. MIA-QSAR coupled to different regression methods for the modeling of antimalarial activities of 2-aziridinyl and 2,3-bis-(aziridinyl)-1,4-naphtoquinonyl sulfate and acylate derivatives.
    Goodarzi M, Freitas MP.
    Med Chem; 2011 Nov 21; 7(6):645-54. PubMed ID: 22313304
    [Abstract] [Full Text] [Related]

  • 16. Development of linear and nonlinear predictive QSAR models and their external validation using molecular similarity principle for anti-HIV indolyl aryl sulfones.
    Roy K, Mandal AS.
    J Enzyme Inhib Med Chem; 2008 Dec 21; 23(6):980-95. PubMed ID: 18608761
    [Abstract] [Full Text] [Related]

  • 17. Four-dimensional structure-activity relationship model to predict HIV-1 integrase strand transfer inhibition using LQTA-QSAR methodology.
    de Melo EB, Ferreira MM.
    J Chem Inf Model; 2012 Jul 23; 52(7):1722-32. PubMed ID: 22657398
    [Abstract] [Full Text] [Related]

  • 18. ANN QSAR workflow for predicting the inhibition of HIV-1 reverse transcriptase by pyridinone non-nucleoside derivatives.
    Barzegar A, Zamani-Gharehchamani E, Kadkhodaie-Ilkhchi A.
    Future Med Chem; 2017 Jul 23; 9(11):1175-1191. PubMed ID: 28722475
    [Abstract] [Full Text] [Related]

  • 19. Comparative QSAR based on neural networks for the anti-HIV activity of HEPT derivatives.
    Douali L, Villemin D, Cherqaoui D.
    Curr Pharm Des; 2003 Jul 23; 9(22):1817-26. PubMed ID: 12871199
    [Abstract] [Full Text] [Related]

  • 20. Introducing new dimensions in MIA-QSAR: a case for chemokine receptor inhibitors.
    Nunes CA, Freitas MP.
    Eur J Med Chem; 2013 Apr 23; 62():297-300. PubMed ID: 23357311
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.