These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


727 related items for PubMed ID: 30827719

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Synthesis and characterization of nanosilver-silicone hydrogel composites for inhibition of bacteria growth.
    Helaly FM, El-Sawy SM, Hashem AI, Khattab AA, Mourad RM.
    Cont Lens Anterior Eye; 2017 Feb; 40(1):59-66. PubMed ID: 27693238
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Ecofriendly synthesis of silver and gold nanoparticles by Euphrasia officinalis leaf extract and its biomedical applications.
    Singh H, Du J, Singh P, Yi TH.
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1163-1170. PubMed ID: 28784039
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Silver nanoparticles produced from Cedecea sp. exhibit antibiofilm activity and remarkable stability.
    Singh P, Pandit S, Jers C, Joshi AS, Garnæs J, Mijakovic I.
    Sci Rep; 2021 Jun 16; 11(1):12619. PubMed ID: 34135368
    [Abstract] [Full Text] [Related]

  • 8. Bioengineered phytomolecules-capped silver nanoparticles using Carissa carandas leaf extract to embed on to urinary catheter to combat UTI pathogens.
    Rahuman HBH, Dhandapani R, Palanivel V, Thangavelu S, Paramasivam R, Muthupandian S.
    PLoS One; 2021 Jun 16; 16(9):e0256748. PubMed ID: 34473763
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A comparative study on synthesis of AgNPs on cellulose nanofibers by thermal treatment and DMF for antibacterial activities.
    Jatoi AW, Kim IS, Ni QQ.
    Mater Sci Eng C Mater Biol Appl; 2019 May 16; 98():1179-1195. PubMed ID: 30813001
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications.
    Bekhit M, Abu El-Naga MN, Sokary R, Fahim RA, El-Sawy NM.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020 May 16; 55(10):1210-1217. PubMed ID: 32614255
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties.
    Salehi S, Shandiz SA, Ghanbar F, Darvish MR, Ardestani MS, Mirzaie A, Jafari M.
    Int J Nanomedicine; 2016 May 16; 11():1835-46. PubMed ID: 27199558
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Assessment of antibacterial efficacy of a biocompatible nanoparticle PC@AgNPs against Staphylococcus aureus.
    Ananda AP, Manukumar HM, Krishnamurthy NB, Nagendra BS, Savitha KR.
    Microb Pathog; 2019 Jan 16; 126():27-39. PubMed ID: 30366128
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.