These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
331 related items for PubMed ID: 30842579
1. Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Goodwine J, Gil J, Doiron A, Valdes J, Solis M, Higa A, Davis S, Sauer K. Sci Rep; 2019 Mar 06; 9(1):3763. PubMed ID: 30842579 [Abstract] [Full Text] [Related]
3. Peganum harmalapeptides (PhAMP) impede bacterial growth and biofilm formation in burn and surgical wound pathogens. Khalid R, Jaffar Q, Tayyeb A, Qaisar U. Pak J Pharm Sci; 2018 Nov 06; 31(6 (Supplementary):2597-2605. PubMed ID: 30587467 [Abstract] [Full Text] [Related]
6. Anti-Biofilm Enzymes-Assisted Antibiotic Therapy against Burn Wound Infection by Pseudomonas aeruginosa. Zhang Y, Liu X, Wen H, Cheng Z, Zhang Y, Zhang H, Mi Z, Fan X. Antimicrob Agents Chemother; 2023 Jul 18; 67(7):e0030723. PubMed ID: 37272814 [Abstract] [Full Text] [Related]
7. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. Herrmann G, Yang L, Wu H, Song Z, Wang H, Høiby N, Ulrich M, Molin S, Riethmüller J, Döring G. J Infect Dis; 2010 Nov 15; 202(10):1585-92. PubMed ID: 20942647 [Abstract] [Full Text] [Related]
8. Activity of Antibiotics against Pseudomonas aeruginosa in an In Vitro Model of Biofilms in the Context of Cystic Fibrosis: Influence of the Culture Medium. Diaz Iglesias Y, Van Bambeke F. Antimicrob Agents Chemother; 2020 Mar 24; 64(4):. PubMed ID: 32015047 [Abstract] [Full Text] [Related]
9. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms. Díez-Aguilar M, Morosini MI, Köksal E, Oliver A, Ekkelenkamp M, Cantón R. Antimicrob Agents Chemother; 2018 Jan 24; 62(1):. PubMed ID: 29084746 [Abstract] [Full Text] [Related]
10. Pseudomonas aeruginosa Increases the Sensitivity of Biofilm-Grown Staphylococcus aureus to Membrane-Targeting Antiseptics and Antibiotics. Orazi G, Ruoff KL, O'Toole GA. mBio; 2019 Jul 30; 10(4):. PubMed ID: 31363032 [Abstract] [Full Text] [Related]
11. In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O'Toole GA. J Antimicrob Chemother; 2012 Nov 30; 67(11):2673-81. PubMed ID: 22843834 [Abstract] [Full Text] [Related]
12. PEGylation of Tobramycin Improves Mucus Penetration and Antimicrobial Activity against Pseudomonas aeruginosa Biofilms in Vitro. Bahamondez-Canas TF, Zhang H, Tewes F, Leal J, Smyth HDC. Mol Pharm; 2018 Apr 02; 15(4):1643-1652. PubMed ID: 29514003 [Abstract] [Full Text] [Related]
13. Pseudomonas aeruginosa Alters Staphylococcus aureus Sensitivity to Vancomycin in a Biofilm Model of Cystic Fibrosis Infection. Orazi G, O'Toole GA. mBio; 2017 Jul 18; 8(4):. PubMed ID: 28720732 [Abstract] [Full Text] [Related]
14. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation. Murray TS, Okegbe C, Gao Y, Kazmierczak BI, Motterlini R, Dietrich LE, Bruscia EM. PLoS One; 2012 Jul 18; 7(4):e35499. PubMed ID: 22563385 [Abstract] [Full Text] [Related]
15. The ionophore oxyclozanide enhances tobramycin killing of Pseudomonas aeruginosa biofilms by permeabilizing cells and depolarizing the membrane potential. Maiden MM, Zachos MP, Waters CM. J Antimicrob Chemother; 2019 Apr 01; 74(4):894-906. PubMed ID: 30624737 [Abstract] [Full Text] [Related]
16. Antibiotic Efficacy Testing in an Ex vivo Model of Pseudomonas aeruginosa and Staphylococcus aureus Biofilms in the Cystic Fibrosis Lung. Harrington NE, Sweeney E, Alav I, Allen F, Moat J, Harrison F. J Vis Exp; 2021 Jan 22; (167):. PubMed ID: 33554970 [Abstract] [Full Text] [Related]
17. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Pompilio A, Crocetta V, Scocchi M, Pomponio S, Di Vincenzo V, Mardirossian M, Gherardi G, Fiscarelli E, Dicuonzo G, Gennaro R, Di Bonaventura G. BMC Microbiol; 2012 Jul 23; 12():145. PubMed ID: 22823964 [Abstract] [Full Text] [Related]
18. Treatment with the Pseudomonas aeruginosa Glycoside Hydrolase PslG Combats Wound Infection by Improving Antibiotic Efficacy and Host Innate Immune Activity. Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ, Howell PL. Antimicrob Agents Chemother; 2019 Jun 23; 63(6):. PubMed ID: 30988141 [Abstract] [Full Text] [Related]
19. Sensitizing bacterial cells to antibiotics by shape recovery triggered biofilm dispersion. Lee SW, Gu H, Kilberg JB, Ren D. Acta Biomater; 2018 Nov 23; 81():93-102. PubMed ID: 30267885 [Abstract] [Full Text] [Related]
20. Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation. Price KE, Orazi G, Ruoff KL, Hebert WP, O'Toole GA, Mastoridis P. PLoS One; 2015 Nov 23; 10(10):e0141192. PubMed ID: 26506004 [Abstract] [Full Text] [Related] Page: [Next] [New Search]