These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


501 related items for PubMed ID: 30850051

  • 1. Biochemical characterization of SUMO-conjugating enzymes by in vitro sumoylation assays.
    Eisenhardt N, Ilic D, Nagamalleswari E, Pichler A.
    Methods Enzymol; 2019; 618():167-185. PubMed ID: 30850051
    [Abstract] [Full Text] [Related]

  • 2. In Vitro SUMOylation Assay to Study SUMO E3 Ligase Activity.
    Yang WS, Campbell M, Kung HJ, Chang PC.
    J Vis Exp; 2018 Jan 29; (131):. PubMed ID: 29443041
    [Abstract] [Full Text] [Related]

  • 3. Alternative allosteric mechanisms can regulate the substrate and E2 in SUMO conjugation.
    Karaca E, Tozluoğlu M, Nussinov R, Haliloğlu T.
    J Mol Biol; 2011 Mar 04; 406(4):620-30. PubMed ID: 21216249
    [Abstract] [Full Text] [Related]

  • 4. Recombinant reconstitution of sumoylation reactions in vitro.
    Flotho A, Werner A, Winter T, Frank AS, Ehret H, Melchior F.
    Methods Mol Biol; 2012 Mar 04; 832():93-110. PubMed ID: 22350878
    [Abstract] [Full Text] [Related]

  • 5. Molecular mechanisms in SUMO conjugation.
    Varejão N, Lascorz J, Li Y, Reverter D.
    Biochem Soc Trans; 2020 Feb 28; 48(1):123-135. PubMed ID: 31872228
    [Abstract] [Full Text] [Related]

  • 6. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic.
    Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ.
    J Biol Chem; 2023 Jul 28; 299(7):104870. PubMed ID: 37247759
    [Abstract] [Full Text] [Related]

  • 7. The SUMO2/3 specific E3 ligase ZNF451-1 regulates PML stability.
    Koidl S, Eisenhardt N, Fatouros C, Droescher M, Chaugule VK, Pichler A.
    Int J Biochem Cell Biol; 2016 Oct 28; 79():478-487. PubMed ID: 27343429
    [Abstract] [Full Text] [Related]

  • 8. Ubc9 sumoylation controls SUMO chain formation and meiotic synapsis in Saccharomyces cerevisiae.
    Klug H, Xaver M, Chaugule VK, Koidl S, Mittler G, Klein F, Pichler A.
    Mol Cell; 2013 Jun 06; 50(5):625-36. PubMed ID: 23644018
    [Abstract] [Full Text] [Related]

  • 9. Identification of biochemically distinct properties of the small ubiquitin-related modifier (SUMO) conjugation pathway in Plasmodium falciparum.
    Reiter K, Mukhopadhyay D, Zhang H, Boucher LE, Kumar N, Bosch J, Matunis MJ.
    J Biol Chem; 2013 Sep 27; 288(39):27724-36. PubMed ID: 23943616
    [Abstract] [Full Text] [Related]

  • 10. Specific substrate recognition and thioester intermediate determinations in ubiquitin and SUMO conjugation cascades revealed by a high-sensitive FRET assay.
    Jiang L, Saavedra AN, Way G, Alanis J, Kung R, Li J, Xiang W, Liao J.
    Mol Biosyst; 2014 Apr 27; 10(4):778-86. PubMed ID: 24452848
    [Abstract] [Full Text] [Related]

  • 11. Ubc9 sumoylation regulates SUMO target discrimination.
    Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A.
    Mol Cell; 2008 Aug 08; 31(3):371-82. PubMed ID: 18691969
    [Abstract] [Full Text] [Related]

  • 12. Protein interactions in the sumoylation cascade: lessons from X-ray structures.
    Tang Z, Hecker CM, Scheschonka A, Betz H.
    FEBS J; 2008 Jun 08; 275(12):3003-15. PubMed ID: 18492068
    [Abstract] [Full Text] [Related]

  • 13. The STUbL RNF4 regulates protein group SUMOylation by targeting the SUMO conjugation machinery.
    Kumar R, González-Prieto R, Xiao Z, Verlaan-de Vries M, Vertegaal ACO.
    Nat Commun; 2017 Nov 27; 8(1):1809. PubMed ID: 29180619
    [Abstract] [Full Text] [Related]

  • 14. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation.
    Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M.
    J Biol Chem; 2013 Dec 20; 288(51):36312-27. PubMed ID: 24174529
    [Abstract] [Full Text] [Related]

  • 15. Identification of a new small ubiquitin-like modifier (SUMO)-interacting motif in the E3 ligase PIASy.
    Kaur K, Park H, Pandey N, Azuma Y, De Guzman RN.
    J Biol Chem; 2017 Jun 16; 292(24):10230-10238. PubMed ID: 28455449
    [Abstract] [Full Text] [Related]

  • 16. SUMOylation of the transcription factor ZFHX3 at Lys-2806 requires SAE1, UBC9, and PIAS2 and enhances its stability and function in cell proliferation.
    Wu R, Fang J, Liu M, A J, Liu J, Chen W, Li J, Ma G, Zhang Z, Zhang B, Fu L, Dong JT.
    J Biol Chem; 2020 May 08; 295(19):6741-6753. PubMed ID: 32249212
    [Abstract] [Full Text] [Related]

  • 17. A mechanistic view of the role of E3 in sumoylation.
    Tozluoğlu M, Karaca E, Nussinov R, Haliloğlu T.
    PLoS Comput Biol; 2010 Aug 26; 6(8):. PubMed ID: 20865051
    [Abstract] [Full Text] [Related]

  • 18. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex.
    Reverter D, Lima CD.
    Nature; 2005 Jun 02; 435(7042):687-92. PubMed ID: 15931224
    [Abstract] [Full Text] [Related]

  • 19. E2-mediated small ubiquitin-like modifier (SUMO) modification of thymine DNA glycosylase is efficient but not selective for the enzyme-product complex.
    Coey CT, Fitzgerald ME, Maiti A, Reiter KH, Guzzo CM, Matunis MJ, Drohat AC.
    J Biol Chem; 2014 May 30; 289(22):15810-9. PubMed ID: 24753249
    [Abstract] [Full Text] [Related]

  • 20. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N, Chaugule VK, Pichler A.
    Methods Mol Biol; 2016 May 30; 1475():67-78. PubMed ID: 27631798
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.