These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


160 related items for PubMed ID: 30850656

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Rods-on-string idealization captures semiflexible filament dynamics.
    Chandran PL, Mofrad MR.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011906. PubMed ID: 19257068
    [Abstract] [Full Text] [Related]

  • 4. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM, Roland J, McCullough BR, Blanchoin L, Martiel JL.
    Biophys J; 2010 Sep 22; 99(6):1852-60. PubMed ID: 20858430
    [Abstract] [Full Text] [Related]

  • 5. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM, Martiel JL, Blanchoin L.
    Biophys J; 2015 May 05; 108(9):2270-81. PubMed ID: 25954884
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A mechanochemical model of actin filaments.
    Yogurtcu ON, Kim JS, Sun SX.
    Biophys J; 2012 Aug 22; 103(4):719-27. PubMed ID: 22947933
    [Abstract] [Full Text] [Related]

  • 8. Actin Filament Strain Promotes Severing and Cofilin Dissociation.
    Schramm AC, Hocky GM, Voth GA, Blanchoin L, Martiel JL, De La Cruz EM.
    Biophys J; 2017 Jun 20; 112(12):2624-2633. PubMed ID: 28636918
    [Abstract] [Full Text] [Related]

  • 9. Ultrastructure of protrusive actin filament arrays.
    Svitkina TM.
    Curr Opin Cell Biol; 2013 Oct 20; 25(5):574-81. PubMed ID: 23639311
    [Abstract] [Full Text] [Related]

  • 10. Reversible stress softening of actin networks.
    Chaudhuri O, Parekh SH, Fletcher DA.
    Nature; 2007 Jan 18; 445(7125):295-8. PubMed ID: 17230186
    [Abstract] [Full Text] [Related]

  • 11. Growth-induced collective bending and kinetic trapping of cytoskeletal filaments.
    Banerjee DS, Freedman SL, Murrell MP, Banerjee S.
    Cytoskeleton (Hoboken); 2024 Aug 18; 81(8):409-419. PubMed ID: 38775207
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Morphological transitions of elastic filaments in shear flow.
    Liu Y, Chakrabarti B, Saintillan D, Lindner A, du Roure O.
    Proc Natl Acad Sci U S A; 2018 Sep 18; 115(38):9438-9443. PubMed ID: 30181295
    [Abstract] [Full Text] [Related]

  • 18. A Versatile Framework for Simulating the Dynamic Mechanical Structure of Cytoskeletal Networks.
    Freedman SL, Banerjee S, Hocky GM, Dinner AR.
    Biophys J; 2017 Jul 25; 113(2):448-460. PubMed ID: 28746855
    [Abstract] [Full Text] [Related]

  • 19. Plastic Deformation and Fragmentation of Strained Actin Filaments.
    Schramm AC, Hocky GM, Voth GA, Martiel JL, De La Cruz EM.
    Biophys J; 2019 Aug 06; 117(3):453-463. PubMed ID: 31301801
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.