These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Structural insights into curdlan degradation via a glycoside hydrolase containing a disruptive carbohydrate-binding module. Lv T, Feng J, Jia X, Wang C, Li F, Peng H, Xiao Y, Liu L, He C. Biotechnol Biofuels Bioprod; 2024 Mar 21; 17(1):45. PubMed ID: 38515133 [Abstract] [Full Text] [Related]
9. Purification and properties of a new exo-(1-->3)-beta-D-glucanase from Bacillus circulans YK9 capable of hydrolysing resistant curdlan with formation of only laminari-biose. Kanzawa Y, Kurasawa T, Kanegae Y, Harada A, Harada T. Microbiology (Reading); 1994 Mar 21; 140 ( Pt 3)():637-42. PubMed ID: 8012586 [Abstract] [Full Text] [Related]
14. Glucan-rich diet is digested and taken up by the carnivorous sundew (Drosera rotundifolia L.): implication for a novel role of plant β-1,3-glucanases. Michalko J, Socha P, Mészáros P, Blehová A, Libantová J, Moravčíková J, Matušíková I. Planta; 2013 Oct 21; 238(4):715-25. PubMed ID: 23832529 [Abstract] [Full Text] [Related]
15. Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 β-1,3-endoglucanase containing a carbohydrate-binding module. Jia X, Wang C, Du X, Peng H, Liu L, Xiao Y, He C. Carbohydr Polym; 2021 Feb 01; 253():117276. PubMed ID: 33278947 [Abstract] [Full Text] [Related]
17. Effective degradation of curdlan powder by a novel endo-β-1→3-glucanase. Li K, Chen W, Wang W, Tan H, Li S, Yin H. Carbohydr Polym; 2018 Dec 01; 201():122-130. PubMed ID: 30241803 [Abstract] [Full Text] [Related]
19. Direct detection of beta-1,3-glucanase in plant extracts by polyacrylamide gel electrophoresis. Kalix S, Buchenauer H. Electrophoresis; 1995 Jun 01; 16(6):1016-8. PubMed ID: 7498122 [Abstract] [Full Text] [Related]