These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
387 related items for PubMed ID: 30857711
41. Detect, remove and re-use: Sensing and degradation pesticides via 3D tilted ZMRs/Ag arrays. Quan Y, Yao J, Yang S, Chen L, Liu Y, Lang J, Zeng H, Yang J, Gao M. J Hazard Mater; 2020 Jun 05; 391():122222. PubMed ID: 32062540 [Abstract] [Full Text] [Related]
42. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Cheng ML, Tsai BC, Yang J. Anal Chim Acta; 2011 Dec 05; 708(1-2):89-96. PubMed ID: 22093349 [Abstract] [Full Text] [Related]
43. Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram. Zhang L, Wang B, Zhu G, Zhou X. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec 10; 133():411-6. PubMed ID: 24973781 [Abstract] [Full Text] [Related]
44. Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Wang P, Wu L, Lu Z, Li Q, Yin W, Ding F, Han H. Anal Chem; 2017 Feb 21; 89(4):2424-2431. PubMed ID: 28194954 [Abstract] [Full Text] [Related]
45. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Asgari S, Sun L, Lin J, Weng Z, Wu G, Zhang Y, Lin M. Mikrochim Acta; 2020 Jun 16; 187(7):390. PubMed ID: 32548791 [Abstract] [Full Text] [Related]
46. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection. Tan EZ, Yin PG, You TT, Wang H, Guo L. ACS Appl Mater Interfaces; 2012 Jul 25; 4(7):3432-7. PubMed ID: 22708788 [Abstract] [Full Text] [Related]
47. Quantitative surface enhanced Raman scattering detection based on the "sandwich" structure substrate. Zhang J, Qu S, Zhang L, Tang A, Wang Z. Spectrochim Acta A Mol Biomol Spectrosc; 2011 Aug 25; 79(3):625-30. PubMed ID: 21531614 [Abstract] [Full Text] [Related]
48. In situ seed-growth synthesis of silver nanoplates on glass for the detection of food contaminants by surface enhanced Raman scattering. D'Agostino A, Giovannozzi AM, Mandrile L, Sacco A, Rossi AM, Taglietti A. Talanta; 2020 Aug 15; 216():120936. PubMed ID: 32456888 [Abstract] [Full Text] [Related]
49. [Rapid determination of melamine in pet food by surface enhanced Raman spectroscopy in combination with Ag nanoparticles]. Cheng J, Su XO. Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jan 15; 31(1):131-5. PubMed ID: 21428073 [Abstract] [Full Text] [Related]
50. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering. Xu KX, Guo MH, Huang YP, Li XD, Sun JJ. Talanta; 2018 Apr 01; 180():383-388. PubMed ID: 29332827 [Abstract] [Full Text] [Related]
51. Ultrasensitive detection of contaminants in milk using a novel NMS-Ag modified water-resistant paper substrate. Su R, Li S, Su Y, Wang Z, Gao M. Food Chem; 2024 Dec 15; 461():140843. PubMed ID: 39178549 [Abstract] [Full Text] [Related]
52. Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Lou T, Wang Y, Li J, Peng H, Xiong H, Chen L. Anal Bioanal Chem; 2011 Jul 15; 401(1):333-8. PubMed ID: 21573845 [Abstract] [Full Text] [Related]
53. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application. Wang JF, Wu XZ, Xiao R, Dong PT, Wang CG. PLoS One; 2014 Jul 15; 9(6):e97976. PubMed ID: 24886913 [Abstract] [Full Text] [Related]
54. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Ouyang L, Yao L, Zhou T, Zhu L. Anal Chim Acta; 2018 Oct 16; 1027():83-91. PubMed ID: 29866273 [Abstract] [Full Text] [Related]
55. Nanopillar Filters for Surface-Enhanced Raman Spectroscopy. Durucan O, Rindzevicius T, Schmidt MS, Matteucci M, Boisen A. ACS Sens; 2017 Oct 27; 2(10):1400-1404. PubMed ID: 28956441 [Abstract] [Full Text] [Related]
56. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y, Wang Y, Liu A, Liu S. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep 05; 297():122721. PubMed ID: 37054572 [Abstract] [Full Text] [Related]
57. Probing the effect of protein corona on SERS signals: insights from melamine detection in milk matrix. Mi S, Du Y, Gao F, Yuan S, Yu H, Guo Y, Cheng Y, Li G, Yao W. Food Chem; 2024 Nov 30; 459():140416. PubMed ID: 39024877 [Abstract] [Full Text] [Related]
58. Quantitative SERS sensor based on self-assembled Au@Ag heterogeneous nanocuboids monolayer with high enhancement factor for practical quantitative detection. Li J, Wang Q, Wang J, Li M, Zhang X, Luan L, Li P, Xu W. Anal Bioanal Chem; 2021 Jul 30; 413(16):4207-4215. PubMed ID: 33987702 [Abstract] [Full Text] [Related]
59. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique. Wang K, Sun DW, Pu H, Wei Q. Food Chem; 2020 Apr 25; 310():125923. PubMed ID: 31837530 [Abstract] [Full Text] [Related]
60. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. Chen LM, Liu YN. ACS Appl Mater Interfaces; 2011 Aug 25; 3(8):3091-6. PubMed ID: 21744828 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]