These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 30861100

  • 1. Effects of body size and root to shoot ratio on foliar nutrient resorption efficiency in Amaranthus mangostanus.
    Peng H, Yan Z, Chen Y, Zhao X, Han W.
    Am J Bot; 2019 Mar; 106(3):363-370. PubMed ID: 30861100
    [Abstract] [Full Text] [Related]

  • 2. Global-scale patterns of nutrient density and partitioning in forests in relation to climate.
    Zhang K, Song C, Zhang Y, Dang H, Cheng X, Zhang Q.
    Glob Chang Biol; 2018 Jan; 24(1):536-551. PubMed ID: 28796923
    [Abstract] [Full Text] [Related]

  • 3. Global scaling the leaf nitrogen and phosphorus resorption of woody species: Revisiting some commonly held views.
    Xu M, Zhu Y, Zhang S, Feng Y, Zhang W, Han X.
    Sci Total Environ; 2021 Sep 20; 788():147807. PubMed ID: 34034176
    [Abstract] [Full Text] [Related]

  • 4. Stage-dependent stoichiometric homeostasis and responses of nutrient resorption in Amaranthus mangostanus to nitrogen and phosphorus addition.
    Peng H, Chen Y, Yan Z, Han W.
    Sci Rep; 2016 Nov 16; 6():37219. PubMed ID: 27849041
    [Abstract] [Full Text] [Related]

  • 5. Nutrient resorption responses of female and male Populus cathayana to drought and shade stress.
    Tang S, Lin X, Li W, Guo C, Han J, Yu L.
    Physiol Plant; 2023 Nov 16; 175(4):e13980. PubMed ID: 37616009
    [Abstract] [Full Text] [Related]

  • 6. Impacts of drought and nitrogen enrichment on leaf nutrient resorption and root nutrient allocation in four Tibetan plant species.
    Zhao Q, Guo J, Shu M, Wang P, Hu S.
    Sci Total Environ; 2020 Jun 25; 723():138106. PubMed ID: 32222509
    [Abstract] [Full Text] [Related]

  • 7. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage.
    Tomlinson KW, van Langevelde F, Ward D, Bongers F, da Silva DA, Prins HH, de Bie S, Sterck FJ.
    Ann Bot; 2013 Aug 25; 112(3):575-87. PubMed ID: 23877001
    [Abstract] [Full Text] [Related]

  • 8. A role for shoot protein in shoot-root dry matter allocation in higher plants.
    Andrews M, Raven JA, Lea PJ, Sprent JI.
    Ann Bot; 2006 Jan 25; 97(1):3-10. PubMed ID: 16299006
    [Abstract] [Full Text] [Related]

  • 9. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat.
    Erenoglu EB, Kutman UB, Ceylan Y, Yildiz B, Cakmak I.
    New Phytol; 2011 Jan 25; 189(2):438-48. PubMed ID: 21029104
    [Abstract] [Full Text] [Related]

  • 10. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization.
    Akhtar MS, Oki Y, Adachi T.
    J Integr Plant Biol; 2009 Nov 25; 51(11):1008-23. PubMed ID: 19903223
    [Abstract] [Full Text] [Related]

  • 11. Abscisic acid accumulation in the roots of nutrient-limited plants: its impact on the differential growth of roots and shoots.
    Vysotskaya LB, Korobova AV, Kudoyarova GR.
    J Plant Physiol; 2008 Aug 25; 165(12):1274-9. PubMed ID: 18166245
    [Abstract] [Full Text] [Related]

  • 12. Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.).
    He BY, Yu DP, Chen Y, Shi JL, Xia Y, Li QS, Wang LL, Ling L, Zeng EY.
    Chemosphere; 2017 Mar 25; 171():588-594. PubMed ID: 28043071
    [Abstract] [Full Text] [Related]

  • 13. Shoot Nutrient Content and Nutrient Resorption of Leymus chinensis in Various Legume Mixtures.
    Li Q, Chen X, Zhou D.
    Front Plant Sci; 2018 Mar 25; 9():1483. PubMed ID: 30386354
    [No Abstract] [Full Text] [Related]

  • 14. How do plants respond to nutrient shortage by biomass allocation?
    Hermans C, Hammond JP, White PJ, Verbruggen N.
    Trends Plant Sci; 2006 Dec 25; 11(12):610-7. PubMed ID: 17092760
    [Abstract] [Full Text] [Related]

  • 15. Scaling the leaf nutrient resorption efficiency: Nitrogen vs phosphorus in global plants.
    He M, Yan Z, Cui X, Gong Y, Li K, Han W.
    Sci Total Environ; 2020 Aug 10; 729():138920. PubMed ID: 32371208
    [Abstract] [Full Text] [Related]

  • 16. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment.
    de Campos MC, Pearse SJ, Oliveira RS, Lambers H.
    Ann Bot; 2013 Mar 10; 111(3):445-54. PubMed ID: 23293017
    [Abstract] [Full Text] [Related]

  • 17. Damage to leaf veins suppresses root foraging precision.
    Yamawo A, Ohsaki H, Cahill JF.
    Am J Bot; 2019 Aug 10; 106(8):1126-1130. PubMed ID: 31397892
    [Abstract] [Full Text] [Related]

  • 18. Simulated climate change decreases nutrient resorption from senescing leaves.
    Prieto I, Querejeta JI.
    Glob Chang Biol; 2020 Mar 10; 26(3):1795-1807. PubMed ID: 31701634
    [Abstract] [Full Text] [Related]

  • 19. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.
    Martin-Vertedor AI, Dodd IC.
    Plant Cell Environ; 2011 Jul 10; 34(7):1164-75. PubMed ID: 21410712
    [Abstract] [Full Text] [Related]

  • 20. Determinants of biomass production in hybrid willows and prediction of field performance from pot studies.
    Weih M, Nordh NE.
    Tree Physiol; 2005 Sep 10; 25(9):1197-206. PubMed ID: 15996963
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.