These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 30861500

  • 21. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon.
    Puibasset J.
    Langmuir; 2009 Jan 20; 25(2):903-11. PubMed ID: 19063620
    [Abstract] [Full Text] [Related]

  • 22. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.
    Yang L, Yang N, Li B.
    Nano Lett; 2014 Jan 20; 14(4):1734-8. PubMed ID: 24559126
    [Abstract] [Full Text] [Related]

  • 23. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD, Childs KW, King AW, Hanson PJ.
    Tree Physiol; 2011 Jun 20; 31(6):669-79. PubMed ID: 21743059
    [Abstract] [Full Text] [Related]

  • 24. Thermal transport properties of antimonene: an ab initio study.
    Wang S, Wang W, Zhao G.
    Phys Chem Chem Phys; 2016 Nov 16; 18(45):31217-31222. PubMed ID: 27819098
    [Abstract] [Full Text] [Related]

  • 25. Electrolytic transport through a synthetic nanometer-diameter pore.
    Ho C, Qiao R, Heng JB, Chatterjee A, Timp RJ, Aluru NR, Timp G.
    Proc Natl Acad Sci U S A; 2005 Jul 26; 102(30):10445-50. PubMed ID: 16020525
    [Abstract] [Full Text] [Related]

  • 26. Thermal Conductivity Reduction in a Silicon Thin Film with Nanocones.
    Huang X, Gluchko S, Anufriev R, Volz S, Nomura M.
    ACS Appl Mater Interfaces; 2019 Sep 18; 11(37):34394-34398. PubMed ID: 31490655
    [Abstract] [Full Text] [Related]

  • 27. Determining the Zeta Potential of Porous Membranes Using Electrolyte Conductivity inside Pores.
    Fievet P, Szymczyk A, Labbez C, Aoubiza B, Simon C, Foissy A, Pagetti J.
    J Colloid Interface Sci; 2001 Mar 15; 235(2):383-390. PubMed ID: 11254318
    [Abstract] [Full Text] [Related]

  • 28. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks.
    Babaei H, McGaughey AJH, Wilmer CE.
    Chem Sci; 2017 Jan 01; 8(1):583-589. PubMed ID: 28451205
    [Abstract] [Full Text] [Related]

  • 29. Thermal transport in porous graphene with coupling effect of nanopore shape and defect concentration.
    Yin H, Zhao R, Liu K, Yang Y, Jiang JW, Wan J.
    Nanotechnology; 2022 Jul 29; 33(42):. PubMed ID: 35830769
    [Abstract] [Full Text] [Related]

  • 30. Polystyrene colloidal crystals: Interface controlled thermal conductivity in an open-porous mesoparticle superstructure.
    Nutz FA, Ruckdeschel P, Retsch M.
    J Colloid Interface Sci; 2015 Nov 01; 457():96-101. PubMed ID: 26160735
    [Abstract] [Full Text] [Related]

  • 31. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M, Bolshakov A, Tovee PD, Zeze DA, Dubrovskii VG, Kolosov OV.
    Ultramicroscopy; 2016 Mar 01; 162():42-51. PubMed ID: 26735005
    [Abstract] [Full Text] [Related]

  • 32. Low lattice thermal conductivity of stanene.
    Peng B, Zhang H, Shao H, Xu Y, Zhang X, Zhu H.
    Sci Rep; 2016 Feb 03; 6():20225. PubMed ID: 26838731
    [Abstract] [Full Text] [Related]

  • 33. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y, Zhang Y, Weaver JMR, Dobson PS.
    Nanotechnology; 2017 Dec 01; 28(48):485706. PubMed ID: 29035274
    [Abstract] [Full Text] [Related]

  • 34. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures.
    Fu B, Tang G, Li Y.
    Phys Chem Chem Phys; 2017 Nov 01; 19(42):28517-28526. PubMed ID: 28902205
    [Abstract] [Full Text] [Related]

  • 35. Extension of the thermal porosimetry method to high gas pressure for nanoporosimetry estimation.
    Jannot Y, Degiovanni A, Camus M.
    Rev Sci Instrum; 2018 Apr 01; 89(4):044904. PubMed ID: 29716346
    [Abstract] [Full Text] [Related]

  • 36. Effects of Microscopic Properties on Macroscopic Thermal Conductivity for Convective Heat Transfer in Porous Materials.
    Jbeili M, Zhang J.
    Micromachines (Basel); 2021 Nov 07; 12(11):. PubMed ID: 34832781
    [Abstract] [Full Text] [Related]

  • 37. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials.
    Félix V, Jannot Y, Degiovanni A.
    Rev Sci Instrum; 2012 May 07; 83(5):054903. PubMed ID: 22667640
    [Abstract] [Full Text] [Related]

  • 38. Sensitivity Enhancement of Silicon-on-Insulator CMOS MEMS Thermal Hot-Film Flow Sensors by Minimizing Membrane Conductive Heat Losses.
    Mehmood Z, Haneef I, Ali SZ, Udrea F.
    Sensors (Basel); 2019 Apr 18; 19(8):. PubMed ID: 31003507
    [Abstract] [Full Text] [Related]

  • 39. Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales.
    He Y, Donadio D, Lee JH, Grossman JC, Galli G.
    ACS Nano; 2011 Mar 22; 5(3):1839-44. PubMed ID: 21309558
    [Abstract] [Full Text] [Related]

  • 40. Thermal conductivity of ordered-disordered material: a case study of superionic Ag2Te.
    Ouyang T, Zhang X, Hu M.
    Nanotechnology; 2015 Jan 16; 26(2):025702. PubMed ID: 25525816
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.