These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 30862287
1. When one phenotype is not enough: divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Zancolli G, Calvete JJ, Cardwell MD, Greene HW, Hayes WK, Hegarty MJ, Herrmann HW, Holycross AT, Lannutti DI, Mulley JF, Sanz L, Travis ZD, Whorley JR, Wüster CE, Wüster W. Proc Biol Sci; 2019 Mar 13; 286(1898):20182735. PubMed ID: 30862287 [Abstract] [Full Text] [Related]
2. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. Rokyta DR, Wray KP, Margres MJ. BMC Genomics; 2013 Jun 12; 14():394. PubMed ID: 23758969 [Abstract] [Full Text] [Related]
3. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids. Smith CF, Mackessy SP. Toxicon; 2016 Sep 15; 120():110-23. PubMed ID: 27496060 [Abstract] [Full Text] [Related]
4. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families. Strickland JL, Mason AJ, Rokyta DR, Parkinson CL. Toxins (Basel); 2018 Mar 23; 10(4):. PubMed ID: 29570631 [Abstract] [Full Text] [Related]
5. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. Sunagar K, Undheim EA, Scheib H, Gren EC, Cochran C, Person CE, Koludarov I, Kelln W, Hayes WK, King GF, Antunes A, Fry BG. J Proteomics; 2014 Mar 17; 99():68-83. PubMed ID: 24463169 [Abstract] [Full Text] [Related]
6. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus). Holding ML, Margres MJ, Rokyta DR, Gibbs HL. J Evol Biol; 2018 Oct 17; 31(10):1513-1528. PubMed ID: 29959877 [Abstract] [Full Text] [Related]
7. Biological and Proteolytic Variation in the Venom of Crotalus scutulatus scutulatus from Mexico. Borja M, Neri-Castro E, Castañeda-Gaytán G, Strickland JL, Parkinson CL, Castañeda-Gaytán J, Ponce-López R, Lomonte B, Olvera-Rodríguez A, Alagón A, Pérez-Morales R. Toxins (Basel); 2018 Jan 08; 10(1):. PubMed ID: 29316683 [Abstract] [Full Text] [Related]
8. Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico. Zancolli G, Baker TG, Barlow A, Bradley RK, Calvete JJ, Carter KC, de Jager K, Owens JB, Price JF, Sanz L, Scholes-Higham A, Shier L, Wood L, Wüster CE, Wüster W. Toxins (Basel); 2016 Jun 16; 8(6):. PubMed ID: 27322321 [Abstract] [Full Text] [Related]
9. Venom variability and envenoming severity outcomes of the Crotalus scutulatus scutulatus (Mojave rattlesnake) from Southern Arizona. Massey DJ, Calvete JJ, Sánchez EE, Sanz L, Richards K, Curtis R, Boesen K. J Proteomics; 2012 May 17; 75(9):2576-87. PubMed ID: 22446891 [Abstract] [Full Text] [Related]
10. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. Calvete JJ, Sanz L, Cid P, de la Torre P, Flores-Díaz M, Dos Santos MC, Borges A, Bremo A, Angulo Y, Lomonte B, Alape-Girón A, Gutiérrez JM. J Proteome Res; 2010 Jan 17; 9(1):528-44. PubMed ID: 19863078 [Abstract] [Full Text] [Related]
16. The binding effectiveness of anti-r-disintegrin polyclonal antibodies against disintegrins and PII and PIII metalloproteases: An immunological survey of type A, B and A+B venoms from Mohave rattlesnakes. Cantú E, Mallela S, Nyguen M, Báez R, Parra V, Johnson R, Wilson K, Suntravat M, Lucena S, Rodríguez-Acosta A, Sánchez EE. Comp Biochem Physiol C Toxicol Pharmacol; 2017 Jan 04; 191():168-176. PubMed ID: 27989783 [Abstract] [Full Text] [Related]
17. Where the "ruber" Meets the Road: Using the Genome of the Red Diamond Rattlesnake to Unravel the Evolutionary Processes Driving Venom Evolution. Hirst SR, Rautsaw RM, VanHorn CM, Beer MA, McDonald PJ, Rosales García RA, Rodriguez Lopez B, Rubio Rincón A, Franz Chávez H, Vásquez-Cruz V, Kelly Hernández A, Storfer A, Borja M, Castañeda-Gaytán G, Frandsen PB, Parkinson CL, Strickland JL, Margres MJ. Genome Biol Evol; 2024 Sep 03; 16(9):. PubMed ID: 39255072 [Abstract] [Full Text] [Related]
18. Intergradation of two different venom populations of the Mojave rattlesnake (Crotalus scutulatus scutulatus) in Arizona. Glenn JL, Straight RC. Toxicon; 1989 Sep 03; 27(4):411-8. PubMed ID: 2499081 [Abstract] [Full Text] [Related]