These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


197 related items for PubMed ID: 30866628

  • 1. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens.
    Qiu Y, Zhu Y, Zhang Y, Sha Y, Xu Z, Li S, Feng X, Xu H.
    J Agric Food Chem; 2019 Apr 03; 67(13):3711-3722. PubMed ID: 30866628
    [Abstract] [Full Text] [Related]

  • 2. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB.
    Sha Y, Zhang Y, Qiu Y, Xu Z, Li S, Feng X, Wang M, Xu H.
    J Agric Food Chem; 2019 Jan 09; 67(1):282-290. PubMed ID: 30543111
    [Abstract] [Full Text] [Related]

  • 3. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens.
    Gao W, Zhang Z, Feng J, Dang Y, Quan Y, Gu Y, Wang S, Song C.
    FEMS Microbiol Lett; 2016 Sep 09; 363(17):. PubMed ID: 27481703
    [Abstract] [Full Text] [Related]

  • 4. Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S.
    Qiu Y, Sha Y, Zhang Y, Xu Z, Li S, Lei P, Xu Z, Feng X, Xu H.
    Bioresour Technol; 2017 Sep 09; 239():197-203. PubMed ID: 28521229
    [Abstract] [Full Text] [Related]

  • 5. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum.
    Feng J, Quan Y, Gu Y, Liu F, Huang X, Shen H, Dang Y, Cao M, Gao W, Lu X, Wang Y, Song C, Wang S.
    Microb Cell Fact; 2017 May 22; 16(1):88. PubMed ID: 28532451
    [Abstract] [Full Text] [Related]

  • 6. Improving poly-(γ-glutamic acid) production from a glutamic acid-independent strain from inulin substrate by consolidated bioprocessing.
    Qiu Y, Zhang Y, Zhu Y, Sha Y, Xu Z, Feng X, Li S, Xu H.
    Bioprocess Biosyst Eng; 2019 Oct 22; 42(10):1711-1720. PubMed ID: 31286217
    [Abstract] [Full Text] [Related]

  • 7. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering.
    Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C.
    Metab Eng; 2015 Nov 22; 32():106-115. PubMed ID: 26410449
    [Abstract] [Full Text] [Related]

  • 8. Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens.
    Zhang W, Xie H, He Y, Feng J, Gao W, Gu Y, Wang S, Song C.
    FEMS Microbiol Lett; 2013 Jun 22; 343(2):127-34. PubMed ID: 23521121
    [Abstract] [Full Text] [Related]

  • 9. CRISPRi-Based Dynamic Regulation of Hydrolase for the Synthesis of Poly-γ-Glutamic Acid with Variable Molecular Weights.
    Sha Y, Qiu Y, Zhu Y, Sun T, Luo Z, Gao J, Feng X, Li S, Xu H.
    ACS Synth Biol; 2020 Sep 18; 9(9):2450-2459. PubMed ID: 32794764
    [Abstract] [Full Text] [Related]

  • 10. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis.
    Gao W, He Y, Zhang F, Zhao F, Huang C, Zhang Y, Zhao Q, Wang S, Yang C.
    Microb Biotechnol; 2019 Sep 18; 12(5):932-945. PubMed ID: 31219230
    [Abstract] [Full Text] [Related]

  • 11. Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus.
    Liu CL, Dong HG, Xue K, Yang W, Liu P, Cai D, Liu X, Yang Y, Bai Z.
    J Appl Microbiol; 2020 May 18; 128(5):1390-1399. PubMed ID: 31837088
    [Abstract] [Full Text] [Related]

  • 12. Curing the plasmid pMC1 from the poly (γ-glutamic acid) producing Bacillus amyloliquefaciens LL3 strain using plasmid incompatibility.
    Feng J, Gu Y, Wang J, Song C, Yang C, Xie H, Zhang W, Wang S.
    Appl Biochem Biotechnol; 2013 Sep 18; 171(2):532-42. PubMed ID: 23873640
    [Abstract] [Full Text] [Related]

  • 13. Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol.
    Zhu Y, Du S, Yan Y, Pan F, Wang R, Li S, Xu H, Luo Z.
    Bioresour Technol; 2022 Sep 18; 359():127382. PubMed ID: 35644456
    [Abstract] [Full Text] [Related]

  • 14. Gamma-polyglutamic acid (gamma-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface.
    Liu J, He D, Li XZ, Gao S, Wu H, Liu W, Gao X, Zhou T.
    Int J Food Microbiol; 2010 Aug 15; 142(1-2):190-7. PubMed ID: 20638145
    [Abstract] [Full Text] [Related]

  • 15. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid Based on Stereochemistry Regulation in Bacillus amyloliquefaciens.
    Sha Y, Huang Y, Zhu Y, Sun T, Luo Z, Qiu Y, Zhan Y, Lei P, Li S, Xu H.
    ACS Synth Biol; 2020 Jun 19; 9(6):1395-1405. PubMed ID: 32353226
    [Abstract] [Full Text] [Related]

  • 16. Mutations in genes encoding antibiotic substances increase the synthesis of poly-γ-glutamic acid in Bacillus amyloliquefaciens LL3.
    Gao W, Liu F, Zhang W, Quan Y, Dang Y, Feng J, Gu Y, Wang S, Song C, Yang C.
    Microbiologyopen; 2017 Feb 19; 6(1):. PubMed ID: 27539744
    [Abstract] [Full Text] [Related]

  • 17. Construction of energy-conserving sucrose utilization pathways for improving poly-γ-glutamic acid production in Bacillus amyloliquefaciens.
    Feng J, Gu Y, Quan Y, Gao W, Dang Y, Cao M, Lu X, Wang Y, Song C, Wang S.
    Microb Cell Fact; 2017 Jun 06; 16(1):98. PubMed ID: 28587617
    [Abstract] [Full Text] [Related]

  • 18. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production.
    Tian G, Wang Q, Wei X, Ma X, Chen S.
    Enzyme Microb Technol; 2017 Apr 06; 99():9-15. PubMed ID: 28193334
    [Abstract] [Full Text] [Related]

  • 19. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02.
    Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S.
    Sci Rep; 2017 Feb 23; 7():43404. PubMed ID: 28230096
    [Abstract] [Full Text] [Related]

  • 20. A markerless gene replacement method for B. amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production.
    Zhang W, Gao W, Feng J, Zhang C, He Y, Cao M, Li Q, Sun Y, Yang C, Song C, Wang S.
    Appl Microbiol Biotechnol; 2014 Nov 23; 98(21):8963-73. PubMed ID: 24859524
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.