These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
260 related items for PubMed ID: 30871475
1. The short-term recovery of corticomotor responses in elbow flexors. Aboodarda SJ, Fan S, Coates K, Millet GY. BMC Neurosci; 2019 Mar 14; 20(1):9. PubMed ID: 30871475 [Abstract] [Full Text] [Related]
2. Knee extensors neuromuscular fatigue changes the corticospinal pathway excitability in biceps brachii muscle. Aboodarda SJ, Šambaher N, Millet GY, Behm DG. Neuroscience; 2017 Jan 06; 340():477-486. PubMed ID: 27826108 [Abstract] [Full Text] [Related]
3. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors. Collins BW, Gale LH, Buckle NCM, Button DC. Physiol Rep; 2017 Apr 06; 5(8):. PubMed ID: 28455452 [Abstract] [Full Text] [Related]
4. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task. Vernillo G, Temesi J, Martin M, Krüger RL, Millet GY. J Neurophysiol; 2020 Sep 01; 124(3):763-773. PubMed ID: 32755359 [Abstract] [Full Text] [Related]
5. Corticospinal excitability of the biceps brachii is shoulder position dependent. Collins BW, Cadigan EWJ, Stefanelli L, Button DC. J Neurophysiol; 2017 Dec 01; 118(6):3242-3251. PubMed ID: 28855295 [Abstract] [Full Text] [Related]
6. Arm-cycling sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability of the biceps brachii. Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC. Appl Physiol Nutr Metab; 2016 Feb 01; 41(2):199-209. PubMed ID: 26799694 [Abstract] [Full Text] [Related]
7. Differences in supraspinal and spinal excitability during various force outputs of the biceps brachii in chronic- and non-resistance trained individuals. Pearcey GE, Power KE, Button DC. PLoS One; 2014 Feb 01; 9(5):e98468. PubMed ID: 24875495 [Abstract] [Full Text] [Related]
8. Changes in supraspinal and spinal excitability of the biceps brachii following brief, non-fatiguing submaximal contractions of the elbow flexors in resistance-trained males. Aboodarda SJ, Copithorne DB, Pearcey GEP, Button DC, Power KE. Neurosci Lett; 2015 Oct 21; 607():66-71. PubMed ID: 26415709 [Abstract] [Full Text] [Related]
9. Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans. Lévénez M, Garland SJ, Klass M, Duchateau J. J Neurophysiol; 2008 Feb 21; 99(2):554-63. PubMed ID: 18046002 [Abstract] [Full Text] [Related]
10. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Abdelmoula A, Baudry S, Duchateau J. Neuroscience; 2016 May 13; 322():94-103. PubMed ID: 26892298 [Abstract] [Full Text] [Related]
11. Unilateral elbow flexion fatigue modulates corticospinal responsiveness in non-fatigued contralateral biceps brachii. Aboodarda SJ, Šambaher N, Behm DG. Scand J Med Sci Sports; 2016 Nov 13; 26(11):1301-1312. PubMed ID: 26633736 [Abstract] [Full Text] [Related]
12. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels. Dongés SC, Taylor JL, Nuzzo JL. Exp Physiol; 2019 Apr 13; 104(4):546-555. PubMed ID: 30690803 [Abstract] [Full Text] [Related]
13. Non-local muscle fatigue is mediated at spinal and supraspinal levels. Amiri E, Gharakhanlou R, Rajabi H, Giboin LS, Rezasoltani Z, Azma K. Exp Brain Res; 2022 Jun 13; 240(6):1887-1897. PubMed ID: 35460346 [Abstract] [Full Text] [Related]
14. Effects of sleep deprivation on perceived and performance fatigability in females: An exploratory study. Magnuson JR, Kang HJ, Debenham MIB, McNeil CJ, Dalton BH. Eur J Sport Sci; 2023 Sep 13; 23(9):1922-1931. PubMed ID: 35989687 [Abstract] [Full Text] [Related]
15. Spinal mechanisms contribute to differences in the time to failure of submaximal fatiguing contractions performed with different loads. Klass M, Lévénez M, Enoka RM, Duchateau J. J Neurophysiol; 2008 Mar 13; 99(3):1096-104. PubMed ID: 18184884 [Abstract] [Full Text] [Related]
16. Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men. Temesi J, Vernillo G, Martin M, Krüger RL, McNeil CJ, Millet GY. Neuroscience; 2019 Dec 01; 422():88-98. PubMed ID: 31682821 [Abstract] [Full Text] [Related]
17. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors. Yacyshyn AF, Kuzyk S, Jakobi JM, McNeil CJ. J Neurophysiol; 2020 Feb 01; 123(2):522-528. PubMed ID: 31774348 [Abstract] [Full Text] [Related]
18. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Exp Brain Res; 2016 Sep 01; 234(9):2541-51. PubMed ID: 27165508 [Abstract] [Full Text] [Related]
19. Responses of human motoneurons to corticospinal stimulation during maximal voluntary contractions and ischemia. Butler JE, Taylor JL, Gandevia SC. J Neurosci; 2003 Nov 12; 23(32):10224-30. PubMed ID: 14614080 [Abstract] [Full Text] [Related]
20. Effect of blood flow occlusion on corticospinal excitability during sustained low-intensity isometric elbow flexion. Copithorne DB, Rice CL, McNeil CJ. J Neurophysiol; 2020 Mar 01; 123(3):1113-1119. PubMed ID: 31995434 [Abstract] [Full Text] [Related] Page: [Next] [New Search]