These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 30877929

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Dual-signal amplification strategy: Universal asymmetric tailing-PCR triggered rolling circle amplification assay for fluorescent detection of Cronobacter spp. in milk.
    Liu J, Zhan Z, Liang T, Xie G, Aguilar ZP, Xu H.
    J Dairy Sci; 2020 Apr; 103(4):3055-3065. PubMed ID: 32037161
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors.
    Zhang K, Wang L, Zhao H, Jiang W.
    Talanta; 2018 Mar 01; 179():331-336. PubMed ID: 29310240
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization.
    Qiu Z, Shu J, He Y, Lin Z, Zhang K, Lv S, Tang D.
    Biosens Bioelectron; 2017 Jan 15; 87():18-24. PubMed ID: 27504793
    [Abstract] [Full Text] [Related]

  • 8. Primer-template conversion-based cascade signal amplification strategy for sensitive and accurate detection of polynucleotide kinase activity.
    Huang C, Shen G, Ding S, Kan A, Jiang D, Jiang W.
    Anal Chim Acta; 2021 Dec 01; 1187():339139. PubMed ID: 34753572
    [Abstract] [Full Text] [Related]

  • 9. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex.
    Liu B, Yang Z, Huang T, Li MM, Duan W, Xie B, Chen JX, Dai Z, Chen J.
    Talanta; 2022 Jul 01; 244():123404. PubMed ID: 35349840
    [Abstract] [Full Text] [Related]

  • 10. Engineering of a DNAzyme-Based dimeric G-quadruplex rolling circle amplification for robust analysis of lead ion.
    Peng Y, Xue P, Chen W, Xu J.
    Talanta; 2024 Jul 01; 274():126029. PubMed ID: 38599120
    [Abstract] [Full Text] [Related]

  • 11. G-quadruplex fluorescent probe-mediated real-time rolling circle amplification strategy for highly sensitive microRNA detection.
    Jiang HX, Liang ZZ, Ma YH, Kong DM, Hong ZY.
    Anal Chim Acta; 2016 Nov 02; 943():114-122. PubMed ID: 27769370
    [Abstract] [Full Text] [Related]

  • 12. Label-Free Telomerase Detection in Single Cell Using a Five-Base Telomerase Product-Triggered Exponential Rolling Circle Amplification Strategy.
    Li X, Cui Y, Du Y, Tang A, Kong D.
    ACS Sens; 2019 Apr 26; 4(4):1090-1096. PubMed ID: 30945529
    [Abstract] [Full Text] [Related]

  • 13. A simple fluorescence biosensing strategy for ultrasensitive detection of the BCR-ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification.
    Wu H, Zhou X, Cheng W, Yuan T, Zhao M, Duan X, Ding S.
    Analyst; 2018 Oct 08; 143(20):4974-4980. PubMed ID: 30225494
    [Abstract] [Full Text] [Related]

  • 14. A dual-mode aptasensor based on rolling circle amplification enriched G-quadruplex for highly sensitive IFN-γ detection.
    Zhao L, Yin Y, Xiao S, Qiu Y, Wang S, Dong Y.
    Anal Chim Acta; 2024 Nov 15; 1329():343254. PubMed ID: 39396313
    [Abstract] [Full Text] [Related]

  • 15. Label-free fluorometric detection of microRNA using isothermal rolling circle amplification generating tandem G-quadruplex.
    Kim M, Kim DM, Kim DE.
    Analyst; 2020 Sep 14; 145(18):6130-6137. PubMed ID: 32869779
    [Abstract] [Full Text] [Related]

  • 16. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification.
    Yi X, Li L, Peng Y, Guo L.
    Biosens Bioelectron; 2014 Jul 15; 57():103-9. PubMed ID: 24561524
    [Abstract] [Full Text] [Related]

  • 17. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity.
    Zhang P, Wang L, Zhao H, Xu X, Jiang W.
    Anal Chim Acta; 2018 Feb 25; 1001():119-124. PubMed ID: 29291794
    [Abstract] [Full Text] [Related]

  • 18. Sensitive and isothermal electrochemiluminescence gene-sensing of Listeria monocytogenes with hyperbranching rolling circle amplification technology.
    Long Y, Zhou X, Xing D.
    Biosens Bioelectron; 2011 Feb 15; 26(6):2897-904. PubMed ID: 21183330
    [Abstract] [Full Text] [Related]

  • 19. Expanding possibilities of rolling circle amplification as a biosensing platform.
    Kobori T, Takahashi H.
    Anal Sci; 2014 Feb 15; 30(1):59-64. PubMed ID: 24420245
    [Abstract] [Full Text] [Related]

  • 20. Fluorometric Detection of Low-Abundance EGFR Exon 19 Deletion Mutation Using Tandem Gene Amplification.
    Kim DM, Zhang S, Kim M, Kim DE.
    J Microbiol Biotechnol; 2020 May 28; 30(5):662-667. PubMed ID: 32482931
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.