These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
178 related items for PubMed ID: 30885325
1. Engineered thermostable β-fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Menéndez C, Martínez D, Pérez ER, Musacchio A, Ramírez R, López-Munguía A, Hernández L. Enzyme Microb Technol; 2019 Jun; 125():53-62. PubMed ID: 30885325 [Abstract] [Full Text] [Related]
2. Constitutive high-level expression of a codon-optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Menéndez C, Martínez D, Trujillo LE, Mazola Y, González E, Pérez ER, Hernández L. Appl Microbiol Biotechnol; 2013 Feb; 97(3):1201-12. PubMed ID: 22821437 [Abstract] [Full Text] [Related]
3. Complete sucrose hydrolysis by heat-killed recombinant Pichia pastoris cells entrapped in calcium alginate. Martínez D, Menéndez C, Echemendia FM, Pérez ER, Trujillo LE, Sobrino A, Ramírez R, Quintero Y, Hernández L. Microb Cell Fact; 2014 Jun 18; 13():87. PubMed ID: 24943124 [Abstract] [Full Text] [Related]
4. Purification, cloning, characterization, and N-glycosylation analysis of a novel β-fructosidase from Aspergillus oryzae FS4 synthesizing levan- and neolevan-type fructooligosaccharides. Xu L, Wang D, Lu L, Jin L, Liu J, Song D, Guo Z, Xiao M. PLoS One; 2014 Jun 18; 9(12):e114793. PubMed ID: 25501957 [Abstract] [Full Text] [Related]
5. Analysis of the gene for beta-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima, and characterisation of the enzyme expressed in Escherichia coli. Liebl W, Brem D, Gotschlich A. Appl Microbiol Biotechnol; 1998 Jul 18; 50(1):55-64. PubMed ID: 9720201 [Abstract] [Full Text] [Related]
6. A thermostable exo-β-fructosidase immobilised through rational design. Martínez D, Cutiño-Avila B, Pérez ER, Menéndez C, Hernández L, Del Monte-Martínez A. Food Chem; 2014 Feb 15; 145():826-31. PubMed ID: 24128552 [Abstract] [Full Text] [Related]
7. Structural Analysis of β-Fructofuranosidase from Xanthophyllomyces dendrorhous Reveals Unique Features and the Crucial Role of N-Glycosylation in Oligomerization and Activity. Ramírez-Escudero M, Gimeno-Pérez M, González B, Linde D, Merdzo Z, Fernández-Lobato M, Sanz-Aparicio J. J Biol Chem; 2016 Mar 25; 291(13):6843-57. PubMed ID: 26823463 [Abstract] [Full Text] [Related]
8. A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. Mazola Y, Guirola O, Palomares S, Chinea G, Menéndez C, Hernández L, Musacchio A. J Mol Model; 2015 Sep 25; 21(9):228. PubMed ID: 26267297 [Abstract] [Full Text] [Related]
9. Cytoplasmic expression of a thermostable invertase from Thermotoga maritima in Lactococcus lactis. Pek HB, Lim PY, Liu C, Lee DY, Bi X, Wong FT, Ow DS. Biotechnol Lett; 2017 May 25; 39(5):759-765. PubMed ID: 28155177 [Abstract] [Full Text] [Related]
10. Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites. Yang J, Ma T, Shang-Guan F, Han Z. Enzyme Microb Technol; 2020 Sep 25; 139():109579. PubMed ID: 32732029 [Abstract] [Full Text] [Related]
11. [High-level expression of an extreme-thermostable xylanase B from Thermotoga maritima MSB8 in Escherichia coli and Pichia pastoris]. Yang MH, Li Y, Guan GH, Jiang ZQ. Wei Sheng Wu Xue Bao; 2005 Apr 25; 45(2):236-40. PubMed ID: 15989268 [Abstract] [Full Text] [Related]
12. Fructooligosaccharides production by Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. Hernández L, Menéndez C, Pérez ER, Martínez D, Alfonso D, Trujillo LE, Ramírez R, Sobrino A, Mazola Y, Musacchio A, Pimentel E. J Biotechnol; 2018 Jan 20; 266():59-71. PubMed ID: 29246839 [Abstract] [Full Text] [Related]
13. Fructooligosaccharides production by immobilized Pichia pastoris cells expressing Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase. Pérez ER, Martínez D, Menéndez C, Alfonso D, Rodríguez I, Trujillo LE, Sobrino A, Ramírez R, Pimentel E, Hernández L. J Ind Microbiol Biotechnol; 2021 Jul 01; 48(5-6):. PubMed ID: 34137896 [Abstract] [Full Text] [Related]
14. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Alberto F, Jordi E, Henrissat B, Czjzek M. Biochem J; 2006 May 01; 395(3):457-62. PubMed ID: 16411890 [Abstract] [Full Text] [Related]
15. Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima. Kim CS, Ji ES, Oh DK. J Appl Microbiol; 2004 May 01; 97(5):1006-14. PubMed ID: 15479416 [Abstract] [Full Text] [Related]
16. Improvement of catalytical properties of two invertases highly tolerant to sucrose after expression in Pichia pastoris. Effect of glycosylation on enzyme properties. Pérez de los Santos AI, Cayetano-Cruz M, Gutiérrez-Antón M, Santiago-Hernández A, Plascencia-Espinosa M, Farrés A, Hidalgo-Lara ME. Enzyme Microb Technol; 2016 Feb 01; 83():48-56. PubMed ID: 26777250 [Abstract] [Full Text] [Related]
17. Heterologous overproduction of β-fructofuranosidase from yeast Xanthophyllomyces dendrorhous, an enzyme producing prebiotic sugars. Gimeno-Pérez M, Linde D, Fernández-Arrojo L, Plou FJ, Fernández-Lobato M. Appl Microbiol Biotechnol; 2015 Apr 01; 99(8):3459-67. PubMed ID: 25359470 [Abstract] [Full Text] [Related]
18. The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M. J Biol Chem; 2004 Apr 30; 279(18):18903-10. PubMed ID: 14973124 [Abstract] [Full Text] [Related]