These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 30889640

  • 1. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications.
    Toloue EB, Karbasi S, Salehi H, Rafienia M.
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1075-1091. PubMed ID: 30889640
    [Abstract] [Full Text] [Related]

  • 2. Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications.
    Ramier J, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Renard E, Albanese P, Grande D.
    Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():161-9. PubMed ID: 24656364
    [Abstract] [Full Text] [Related]

  • 3. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C, Qin Z, Xianyou S, Yuanpei L.
    Mater Sci Eng C Mater Biol Appl; 2017 Feb 01; 71():797-806. PubMed ID: 27987775
    [Abstract] [Full Text] [Related]

  • 4. Biological evaluation and osteogenic potential of polyhydroxybutyrate-keratin/Al2O3 electrospun nanocomposite scaffold: A novel bone regeneration construct.
    Ghafari F, Karbasi S, Baghaban Eslaminejad M, Sayahpour FA, Kalantari N.
    Int J Biol Macromol; 2023 Jul 01; 242(Pt 1):124602. PubMed ID: 37141963
    [Abstract] [Full Text] [Related]

  • 5. Evaluation of Mechanical Properties and Cell Viability of Poly (3-Hydroxybutyrate)-Chitosan/Al2O3 Nanocomposite Scaffold for Cartilage Tissue Engineering.
    Toloue EB, Karbasi S, Salehi H, Rafienia M.
    J Med Signals Sens; 2019 Jul 01; 9(2):111-116. PubMed ID: 31316904
    [Abstract] [Full Text] [Related]

  • 6. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M, Chiellini F, Bondioli F, Morselli D, Fabbri P.
    Mater Sci Eng C Mater Biol Appl; 2019 Jul 01; 100():286-296. PubMed ID: 30948063
    [Abstract] [Full Text] [Related]

  • 7. Physical, mechanical and biological performance of PHB-Chitosan/MWCNTs nanocomposite coating deposited on bioglass based scaffold: Potential application in bone tissue engineering.
    Parvizifard M, Karbasi S.
    Int J Biol Macromol; 2020 Jun 01; 152():645-662. PubMed ID: 32109478
    [Abstract] [Full Text] [Related]

  • 8. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H, Huang J, Yu J, Liu S, Gu P.
    Int J Biol Macromol; 2011 Jan 01; 48(1):13-9. PubMed ID: 20933540
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C, Yi X, Haizheng Y, Jia J, Liu Y.
    Mater Sci Eng C Mater Biol Appl; 2016 Jan 01; 58():757-67. PubMed ID: 26478369
    [Abstract] [Full Text] [Related]

  • 13. Evaluating the osteogenic properties of polyhydroxybutyrate-zein/multiwalled carbon nanotubes (MWCNTs) electrospun composite scaffold for bone tissue engineering applications.
    Esmaeili M, Ghasemi S, Shariati L, Karbasi S.
    Int J Biol Macromol; 2024 Sep 01; 276(Pt 2):133829. PubMed ID: 39002904
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.
    Nagiah N, Madhavi L, Anitha R, Anandan C, Srinivasan NT, Sivagnanam UT.
    Mater Sci Eng C Mater Biol Appl; 2013 Oct 01; 33(7):4444-52. PubMed ID: 23910364
    [Abstract] [Full Text] [Related]

  • 19. Fabrication and Characterization of Nanofibrous Poly (L-Lactic Acid)/Chitosan-Based Scaffold by Liquid-Liquid Phase Separation Technique for Nerve Tissue Engineering.
    Ehterami A, Masoomikarimi M, Bastami F, Jafarisani M, Alizadeh M, Mehrabi M, Salehi M.
    Mol Biotechnol; 2021 Sep 01; 63(9):818-827. PubMed ID: 34076821
    [Abstract] [Full Text] [Related]

  • 20. Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering.
    Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R.
    J Biomed Nanotechnol; 2013 Mar 01; 9(3):430-40. PubMed ID: 23620999
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.