These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


201 related items for PubMed ID: 30900016

  • 1. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand.
    Nguyen UNT, Pham LTH, Dang TD.
    Environ Monit Assess; 2019 Mar 21; 191(4):235. PubMed ID: 30900016
    [Abstract] [Full Text] [Related]

  • 2. Correction to: an automatic water detection approach using Landsat 8 OLI and Google earth engine cloud computing to map lakes and reservoirs in New Zealand.
    Nguyen UNT, Pham LTH, Dang TD.
    Environ Monit Assess; 2020 Sep 02; 192(9):616. PubMed ID: 32876754
    [Abstract] [Full Text] [Related]

  • 3. Monitoring spatio-temporal changes in wetlands with harmonized image series in Google Earth Engine.
    Gürbüz E.
    Environ Monit Assess; 2023 May 30; 195(6):770. PubMed ID: 37249669
    [Abstract] [Full Text] [Related]

  • 4. A unified model for high resolution mapping of global lake (>1 ha) clarity using Landsat imagery data.
    Song K, Wang Q, Liu G, Jacinthe PA, Li S, Tao H, Du Y, Wen Z, Wang X, Guo W, Wang Z, Shi K, Du J, Shang Y, Lyu L, Hou J, Zhang B, Cheng S, Lyu Y, Fei L.
    Sci Total Environ; 2022 Mar 01; 810():151188. PubMed ID: 34710411
    [Abstract] [Full Text] [Related]

  • 5. Spatiotemporal statistical analysis of water area changes with climatic variables using Google Earth Engine for Lakes Region in Türkiye.
    Yilmaz OS.
    Environ Monit Assess; 2023 May 26; 195(6):735. PubMed ID: 37233858
    [Abstract] [Full Text] [Related]

  • 6. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine.
    Zhou Y, Dong J, Xiao X, Liu R, Zou Z, Zhao G, Ge Q.
    Sci Total Environ; 2019 Nov 01; 689():366-380. PubMed ID: 31277004
    [Abstract] [Full Text] [Related]

  • 7. Water clarity mapping of global lakes using a novel hybrid deep-learning-based recurrent model with Landsat OLI images.
    He Y, Lu Z, Wang W, Zhang D, Zhang Y, Qin B, Shi K, Yang X.
    Water Res; 2022 May 15; 215():118241. PubMed ID: 35259557
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Detecting landslide-dammed lakes on Sentinel-2 imagery and monitoring their spatio-temporal evolution following the Kaikōura earthquake in New Zealand.
    Abad L, Hölbling D, Spiekermann R, Prasicek G, Dabiri Z, Argentin AL.
    Sci Total Environ; 2022 May 10; 820():153335. PubMed ID: 35077801
    [Abstract] [Full Text] [Related]

  • 11. Comparison of thresholding methods for shoreline extraction from Sentinel-2 and Landsat-8 imagery: Extreme Lake Salda, track of Mars on Earth.
    Karaman M.
    J Environ Manage; 2021 Nov 15; 298():113481. PubMed ID: 34392093
    [Abstract] [Full Text] [Related]

  • 12. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.
    Duru U.
    Environ Monit Assess; 2017 Aug 15; 189(8):385. PubMed ID: 28688069
    [Abstract] [Full Text] [Related]

  • 13. Detecting, extracting, and mapping of inland surface water using Landsat 8 Operational Land Imager: A case study of Pune district, India.
    Kulkarni R, Khare K, Khanum H.
    F1000Res; 2022 Aug 15; 11():774. PubMed ID: 36704046
    [Abstract] [Full Text] [Related]

  • 14. Improving on mapping long-term surface water with a novel framework based on the Landsat imagery series.
    Lan L, Wang YG, Chen HS, Gao XR, Wang XK, Yan XF.
    J Environ Manage; 2024 Feb 27; 353():120202. PubMed ID: 38308984
    [Abstract] [Full Text] [Related]

  • 15. Evaluation of the Threshold for an Improved Surface Water Extraction Index Using Optical Remote Sensing Data.
    Yulianto F, Kushardono D, Budhiman S, Nugroho G, Chulafak GA, Dewi EK, Pambudi AI.
    ScientificWorldJournal; 2022 Feb 27; 2022():4894929. PubMed ID: 35281749
    [Abstract] [Full Text] [Related]

  • 16. Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine.
    Dong J, Xiao X, Menarguez MA, Zhang G, Qin Y, Thau D, Biradar C, Moore B.
    Remote Sens Environ; 2016 Nov 27; 185():142-154. PubMed ID: 28025586
    [Abstract] [Full Text] [Related]

  • 17. Monitoring and analysis of desertification surrounding Qinghai Lake (China) using remote sensing big data.
    Zhou Y, Hu Z, Geng Q, Ma J, Liu J, Wang M, Wang Y.
    Environ Sci Pollut Res Int; 2023 Feb 27; 30(7):17420-17436. PubMed ID: 36194325
    [Abstract] [Full Text] [Related]

  • 18. [Surface water change characteristics of Taihu Lake from 1984-2018 based on Google Earth Engine].
    Liu YY, Tian T, Zeng P, Zhang XY, Che Y.
    Ying Yong Sheng Tai Xue Bao; 2020 Sep 15; 31(9):3163-3172. PubMed ID: 33345518
    [Abstract] [Full Text] [Related]

  • 19. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand.
    Hicks BJ, Stichbury GA, Brabyn LK, Allan MG, Ashraf S.
    Environ Monit Assess; 2013 Sep 15; 185(9):7245-61. PubMed ID: 23430067
    [Abstract] [Full Text] [Related]

  • 20. Rapid and automatic burned area detection using sentinel-2 time-series images in google earth engine cloud platform: a case study over the Andika and Behbahan Regions, Iran.
    Farhadi H, Mokhtarzade M, Ebadi H, Beirami BA.
    Environ Monit Assess; 2022 Apr 16; 194(5):369. PubMed ID: 35430649
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.