These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


851 related items for PubMed ID: 30901275

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Knockout of TIGAR enhances myocardial phosphofructokinase activity and preserves diastolic function in heart failure.
    He X, Zeng H, Cantrell AC, Williams QA, Chen JX.
    J Cell Physiol; 2022 Aug; 237(8):3317-3327. PubMed ID: 35621078
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Regulatory role of TIGAR on endothelial metabolism and angiogenesis.
    He X, Zeng H, Cantrell AC, Chen JX.
    J Cell Physiol; 2021 Nov; 236(11):7578-7590. PubMed ID: 33928637
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure.
    Bradley JM, Li Z, Organ CL, Polhemus DJ, Otsuka H, Islam KN, Bhushan S, Gorodnya OM, Ruchko MV, Gillespie MN, Wilson GL, Lefer DJ.
    Am J Physiol Heart Circ Physiol; 2018 Feb 01; 314(2):H311-H321. PubMed ID: 29101177
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Glucose is preferentially utilized for biomass synthesis in pressure-overloaded hearts: evidence from fatty acid-binding protein-4 and -5 knockout mice.
    Umbarawan Y, Syamsunarno MRAA, Koitabashi N, Yamaguchi A, Hanaoka H, Hishiki T, Nagahata-Naito Y, Obinata H, Sano M, Sunaga H, Matsui H, Tsushima Y, Suematsu M, Kurabayashi M, Iso T.
    Cardiovasc Res; 2018 Jul 01; 114(8):1132-1144. PubMed ID: 29554241
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. TIGAR Deficiency Blunts Angiotensin-II-Induced Cardiac Hypertrophy in Mice.
    He X, Williams QA, Cantrell AC, Besanson J, Zeng H, Chen JX.
    Int J Mol Sci; 2024 Feb 19; 25(4):. PubMed ID: 38397106
    [Abstract] [Full Text] [Related]

  • 12. PGC-1β deficiency accelerates the transition to heart failure in pressure overload hypertrophy.
    Riehle C, Wende AR, Zaha VG, Pires KM, Wayment B, Olsen C, Bugger H, Buchanan J, Wang X, Moreira AB, Doenst T, Medina-Gomez G, Litwin SE, Lelliott CJ, Vidal-Puig A, Abel ED.
    Circ Res; 2011 Sep 16; 109(7):783-93. PubMed ID: 21799152
    [Abstract] [Full Text] [Related]

  • 13. Raf kinase inhibitor protein mediates myocardial fibrosis under conditions of enhanced myocardial oxidative stress.
    Kazakov A, Hall RA, Werner C, Meier T, Trouvain A, Rodionycheva S, Nickel A, Lammert F, Maack C, Böhm M, Laufs U.
    Basic Res Cardiol; 2018 Sep 06; 113(6):42. PubMed ID: 30191336
    [Abstract] [Full Text] [Related]

  • 14. Osteopontin RNA aptamer can prevent and reverse pressure overload-induced heart failure.
    Li J, Yousefi K, Ding W, Singh J, Shehadeh LA.
    Cardiovasc Res; 2017 May 01; 113(6):633-643. PubMed ID: 28453726
    [Abstract] [Full Text] [Related]

  • 15. Mitoquinone ameliorates pressure overload-induced cardiac fibrosis and left ventricular dysfunction in mice.
    Goh KY, He L, Song J, Jinno M, Rogers AJ, Sethu P, Halade GV, Rajasekaran NS, Liu X, Prabhu SD, Darley-Usmar V, Wende AR, Zhou L.
    Redox Biol; 2019 Feb 01; 21():101100. PubMed ID: 30641298
    [Abstract] [Full Text] [Related]

  • 16. Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload-Induced Heart Failure.
    Salvador AM, Nevers T, Velázquez F, Aronovitz M, Wang B, Abadía Molina A, Jaffe IZ, Karas RH, Blanton RM, Alcaide P.
    J Am Heart Assoc; 2016 Mar 15; 5(3):e003126. PubMed ID: 27068635
    [Abstract] [Full Text] [Related]

  • 17. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction.
    Abe I, Terabayashi T, Hanada K, Kondo H, Teshima Y, Ishii Y, Miyoshi M, Kira S, Saito S, Tsuchimochi H, Shirai M, Yufu K, Arakane M, Daa T, Thumkeo D, Narumiya S, Takahashi N, Ishizaki T.
    Cardiovasc Res; 2021 Mar 21; 117(4):1103-1117. PubMed ID: 32647865
    [Abstract] [Full Text] [Related]

  • 18. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL, Zhang L, Wagg C, Al Batran R, Gopal K, Levasseur J, Leone T, Dyck JRB, Ussher JR, Muoio DM, Kelly DP, Lopaschuk GD.
    Cardiovasc Res; 2019 Sep 01; 115(11):1606-1616. PubMed ID: 30778524
    [Abstract] [Full Text] [Related]

  • 19. Cardiomyocyte-specific loss of RNA polymerase II subunit 5-mediating protein causes myocardial dysfunction and heart failure.
    Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, Huang X, Wan S, Lan HY, Wang H.
    Cardiovasc Res; 2019 Sep 01; 115(11):1617-1628. PubMed ID: 30590389
    [Abstract] [Full Text] [Related]

  • 20. Cytosolic DNA sensor cGAS plays an essential pathogenetic role in pressure overload-induced heart failure.
    Hu D, Cui YX, Wu MY, Li L, Su LN, Lian Z, Chen H.
    Am J Physiol Heart Circ Physiol; 2020 Jun 01; 318(6):H1525-H1537. PubMed ID: 32383996
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 43.