These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 30902310
21. Mechanistic study on inhibition of porcine pancreatic α-amylase using the flavonoids from dandelion. Huang Y, Wu P, Ying J, Dong Z, Chen XD. Food Chem; 2021 May 15; 344():128610. PubMed ID: 33221105 [Abstract] [Full Text] [Related]
22. Phytonutrients for controlling starch digestion: evaluation of grape skin extract. Miao M, Jiang H, Jiang B, Zhang T, Cui SW, Jin Z. Food Chem; 2014 Feb 15; 145():205-11. PubMed ID: 24128469 [Abstract] [Full Text] [Related]
23. Tea polyphenols enhance binding of porcine pancreatic α-amylase with starch granules but reduce catalytic activity. Sun L, Gidley MJ, Warren FJ. Food Chem; 2018 Aug 30; 258():164-173. PubMed ID: 29655719 [Abstract] [Full Text] [Related]
24. Thermally processed lignin reduces the apparent hydrolysis rate of pancreatic α-amylase in starchy foods. Zou W, Zhang X, Stockmann R. Carbohydr Polym; 2021 Jul 01; 263():117961. PubMed ID: 33858568 [Abstract] [Full Text] [Related]
25. Refined molecular structure of pig pancreatic alpha-amylase at 2.1 A resolution. Larson SB, Greenwood A, Cascio D, Day J, McPherson A. J Mol Biol; 1994 Feb 04; 235(5):1560-84. PubMed ID: 8107092 [Abstract] [Full Text] [Related]
26. Electrochemical quantification of some water soluble vitamins in commercial multi-vitamin using poly-amino acid caped by graphene quantum dots nanocomposite as dual signal amplification elements. Shadjou N, Hasanzadeh M, Omari A. Anal Biochem; 2017 Dec 15; 539():70-80. PubMed ID: 29056522 [Abstract] [Full Text] [Related]
27. Rapid Discovery of Potent and Selective Glycosidase-Inhibiting De Novo Peptides. Jongkees SAK, Caner S, Tysoe C, Brayer GD, Withers SG, Suga H. Cell Chem Biol; 2017 Mar 16; 24(3):381-390. PubMed ID: 28262556 [Abstract] [Full Text] [Related]
28. Inhibitory Effect of Ascorbic Acid on in vitro Enzymatic Digestion of Raw and Cooked Starches. Guo J, Gutierrez A, Tan L, Kong L. Front Nutr; 2021 Mar 16; 8():758367. PubMed ID: 34901111 [Abstract] [Full Text] [Related]
29. [I. Anemia and regressive changes in organs in chicks; inbalance of folic acid and other water-soluble vitamins; correlation of functions of folic and ascorbic acids. II. Paresis and paralysis of the peripheral nerves in chicks; inbalance of riboflavin with other vitamins of the B complex in diet]. DOMANSKI E, DOBROWOLSKA D, ZALEWSKA E. Acta Physiol Pol; 1957 Mar 16; 8(1):139-52. PubMed ID: 13469499 [No Abstract] [Full Text] [Related]
30. Xanthine derivatives as activators of alpha-amylase: hypothesis on a link with the hyperglycemia induced by caffeine. Kashani-Amin E, Yaghmaei P, Larijani B, Ebrahim-Habibi A. Obes Res Clin Pract; 2013 Dec 16; 7(6):e487-93. PubMed ID: 24308891 [Abstract] [Full Text] [Related]
32. [The manner of transport of the water-soluble vitamins]. Blum JC. Ann Nutr Aliment; 1969 Dec 16; 23(2):A5-25. PubMed ID: 4241267 [No Abstract] [Full Text] [Related]
33. Extended release of vitamins from magnetite loaded polyanionic polymeric beads. Sonmez M, Verisan C, Voicu G, Ficai D, Ficai A, Oprea AE, Vlad M, Andronescu E. Int J Pharm; 2016 Aug 30; 510(2):457-64. PubMed ID: 26626225 [Abstract] [Full Text] [Related]
34. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes. Carpenter D, Dhar S, Mitchell LM, Fu B, Tyson J, Shwan NA, Yang F, Thomas MG, Armour JA. Hum Mol Genet; 2015 Jun 15; 24(12):3472-80. PubMed ID: 25788522 [Abstract] [Full Text] [Related]
35. Interactions of flavonoids with α-amylase and starch slowing down its digestion. Takahama U, Hirota S. Food Funct; 2018 Feb 21; 9(2):677-687. PubMed ID: 29292445 [Abstract] [Full Text] [Related]
36. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Sun L, Chen W, Meng Y, Yang X, Yuan L, Guo Y, Warren FJ, Gidley MJ. Food Chem; 2016 Oct 01; 208():51-60. PubMed ID: 27132823 [Abstract] [Full Text] [Related]
37. Starch digested product analysis by HPAEC reveals structural specificity of flavonoids in the inhibition of mammalian α-amylase and α-glucosidases. Lim J, Zhang X, Ferruzzi MG, Hamaker BR. Food Chem; 2019 Aug 01; 288():413-421. PubMed ID: 30902312 [Abstract] [Full Text] [Related]
38. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine. Takahama U, Hirota S. Food Chem; 2013 Nov 01; 141(1):313-9. PubMed ID: 23768363 [Abstract] [Full Text] [Related]
39. The important role of salivary α-amylase in the gastric digestion of wheat bread starch. Freitas D, Le Feunteun S, Panouillé M, Souchon I. Food Funct; 2018 Jan 24; 9(1):200-208. PubMed ID: 29260815 [Abstract] [Full Text] [Related]
40. Hibiscus acid as an inhibitor of starch digestion in the Caco-2 cell model system. Hansawasdi C, Kawabata J, Kasai T. Biosci Biotechnol Biochem; 2001 Sep 24; 65(9):2087-9. PubMed ID: 11676026 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]