These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 30903965
1. Population shrinkage of covariance (PoSCE) for better individual brain functional-connectivity estimation. Rahim M, Thirion B, Varoquaux G. Med Image Anal; 2019 May; 54():138-148. PubMed ID: 30903965 [Abstract] [Full Text] [Related]
2. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators. Mejia AF, Nebel MB, Shou H, Crainiceanu CM, Pekar JJ, Mostofsky S, Caffo B, Lindquist MA. Neuroimage; 2015 May 15; 112():14-29. PubMed ID: 25731998 [Abstract] [Full Text] [Related]
4. Predicting individual brain functional connectivity using a Bayesian hierarchical model. Dai T, Guo Y, Alzheimer's Disease Neuroimaging InitiativeDepartment of Biostatistics and Bioinformatics, The Rollins School of Public Health, Emory University, Atlanta, GA, United States.. Neuroimage; 2017 Feb 15; 147():772-787. PubMed ID: 27915121 [Abstract] [Full Text] [Related]
5. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage. Mejia AF, Nebel MB, Barber AD, Choe AS, Pekar JJ, Caffo BS, Lindquist MA. Neuroimage; 2018 May 15; 172():478-491. PubMed ID: 29391241 [Abstract] [Full Text] [Related]
8. Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity. You K, Park HJ. Neuroimage; 2021 Jan 15; 225():117464. PubMed ID: 33075555 [Abstract] [Full Text] [Related]
9. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. Colclough GL, Woolrich MW, Harrison SJ, Rojas López PA, Valdes-Sosa PA, Smith SM. Neuroimage; 2018 Sep 15; 178():370-384. PubMed ID: 29746906 [Abstract] [Full Text] [Related]
10. Covariance shrinkage can assess and improve functional connectomes. Honnorat N, Habes M. Neuroimage; 2022 Aug 01; 256():119229. PubMed ID: 35460918 [Abstract] [Full Text] [Related]
11. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. Varoquaux G, Baronnet F, Kleinschmidt A, Fillard P, Thirion B. Med Image Comput Comput Assist Interv; 2010 Aug 01; 13(Pt 1):200-8. PubMed ID: 20879232 [Abstract] [Full Text] [Related]
12. Transport on Riemannian manifold for functional connectivity-based classification. Ng B, Dressler M, Varoquaux G, Poline JB, Greicius M, Thirion B. Med Image Comput Comput Assist Interv; 2014 Aug 01; 17(Pt 2):405-12. PubMed ID: 25485405 [Abstract] [Full Text] [Related]
13. Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. PLoS Comput Biol; 2016 Mar 01; 12(3):e1004762. PubMed ID: 26982185 [Abstract] [Full Text] [Related]
17. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. Yoo K, Rosenberg MD, Hsu WT, Zhang S, Li CR, Scheinost D, Constable RT, Chun MM. Neuroimage; 2018 Feb 15; 167():11-22. PubMed ID: 29122720 [Abstract] [Full Text] [Related]
18. Dissociating individual connectome traits using low-rank learning. Qin J, Shen H, Zeng LL, Gao K, Luo Z, Hu D. Brain Res; 2019 Nov 01; 1722():146348. PubMed ID: 31348912 [Abstract] [Full Text] [Related]