These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 30913853

  • 1. Enhanced Quantum Dot Sensitized Solar Cells Performance with One-Step Synthesized Co0.85Se Counter Electrode.
    Ji X, Zhang M, Zhang D, Wang Y, Huang Y, Yan Y, Sun P, Li Z.
    J Nanosci Nanotechnol; 2019 Aug 01; 19(8):5338-5343. PubMed ID: 30913853
    [Abstract] [Full Text] [Related]

  • 2. Antimony tin oxide/lead selenide composite as efficient counter electrode material for quantum dot-sensitized solar cells.
    Jin BB, Huang HS, Kong SY, Zhang GQ, Yang B, Jiang CX, Zhou Y, Wang DJ, Zeng JH.
    J Colloid Interface Sci; 2021 Sep 15; 598():492-499. PubMed ID: 33951547
    [Abstract] [Full Text] [Related]

  • 3. Transparent Cobalt Selenide/Graphene Counter Electrode for Efficient Dye-Sensitized Solar Cells with Co2+/3+-Based Redox Couple.
    Peng JD, Wu YT, Yeh MH, Kuo FY, Vittal R, Ho KC.
    ACS Appl Mater Interfaces; 2020 Oct 07; 12(40):44597-44607. PubMed ID: 32894678
    [Abstract] [Full Text] [Related]

  • 4. Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells.
    Faber MS, Park K, Cabán-Acevedo M, Santra PK, Jin S.
    J Phys Chem Lett; 2013 Jun 06; 4(11):1843-9. PubMed ID: 26283119
    [Abstract] [Full Text] [Related]

  • 5. Nickel selenide/reduced graphene oxide nanocomposite as counter electrode for high efficient dye-sensitized solar cells.
    Dong J, Wu J, Jia J, Fan L, Lin J.
    J Colloid Interface Sci; 2017 Jul 15; 498():217-222. PubMed ID: 28334659
    [Abstract] [Full Text] [Related]

  • 6. Large-scale synthesis of Cu2SnS3 and Cu(1.8)S hierarchical microspheres as efficient counter electrode materials for quantum dot sensitized solar cells.
    Xu J, Yang X, Wong TL, Lee CS.
    Nanoscale; 2012 Oct 21; 4(20):6537-42. PubMed ID: 22968176
    [Abstract] [Full Text] [Related]

  • 7. Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.
    Deng J, Wang M, Song X, Yang Z, Yuan Z.
    Nanomaterials (Basel); 2018 Apr 17; 8(4):. PubMed ID: 29673225
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Nanocrystalline Co0.85Se Anchored on Graphene Nanosheets as a Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.
    Yu B, Qi F, Chen Y, Wang X, Zheng B, Zhang W, Li Y, Zhang LC.
    ACS Appl Mater Interfaces; 2017 Sep 13; 9(36):30703-30710. PubMed ID: 28829113
    [Abstract] [Full Text] [Related]

  • 10. In situ direct growth of single crystalline metal (Co, Ni) selenium nanosheets on metal fibers as counter electrodes toward low-cost, high-performance fiber-shaped dye-sensitized solar cells.
    Chen L, Yin H, Zhou Y, Dai H, Yu T, Liu J, Zou Z.
    Nanoscale; 2016 Jan 28; 8(4):2304-8. PubMed ID: 26752737
    [Abstract] [Full Text] [Related]

  • 11. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition.
    Thulasi-Varma CV, Rao SS, Kumar CS, Gopi CV, Durga IK, Kim SK, Punnoose D, Kim HJ.
    Dalton Trans; 2015 Nov 28; 44(44):19330-43. PubMed ID: 26497705
    [Abstract] [Full Text] [Related]

  • 12. Inception of Co3O4 as Microstructural Support to Promote Alkaline Oxygen Evolution Reaction for Co0.85Se/Co9Se8 Network.
    Ghosh S, Tudu G, Mondal A, Ganguli S, Inta HR, Mahalingam V.
    Inorg Chem; 2020 Dec 07; 59(23):17326-17339. PubMed ID: 33213153
    [Abstract] [Full Text] [Related]

  • 13. Zeolitic-imidazolate frameworks derived Pt-free counter electrodes for high-performance quantum dot-sensitized solar cells.
    Xu W, Sun Y, Ding B, Zhang J.
    R Soc Open Sci; 2018 May 07; 5(5):180335. PubMed ID: 29892460
    [Abstract] [Full Text] [Related]

  • 14. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells.
    Zhu G, Cheng Z, Lv T, Pan L, Zhao Q, Sun Z.
    Nanoscale; 2010 Jul 07; 2(7):1229-32. PubMed ID: 20648354
    [Abstract] [Full Text] [Related]

  • 15. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells.
    Kim HJ, Myung-Sik L, Gopi CV, Venkata-Haritha M, Rao SS, Kim SK.
    Dalton Trans; 2015 Jul 07; 44(25):11340-51. PubMed ID: 26011676
    [Abstract] [Full Text] [Related]

  • 16. Synthesis of TiO₂-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition.
    Zuo Y, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH.
    Nanotechnology; 2016 Apr 08; 27(14):145701. PubMed ID: 26903086
    [Abstract] [Full Text] [Related]

  • 17. In situ sulfidation of porous sponge-like CuO/SiW11Co into Cu2S/SiW11Co as stabilized and efficient counter electrode for quantum dot-sensitized solar cells.
    Zhang Q, Jin L, Zhang Y, Zhang T, Li F, Xu L.
    Dalton Trans; 2021 Apr 07; 50(13):4519-4526. PubMed ID: 33720235
    [Abstract] [Full Text] [Related]

  • 18. Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction.
    Rajesh JA, Kim JY, Kang SH, Ahn KS.
    Micromachines (Basel); 2023 Oct 05; 14(10):. PubMed ID: 37893342
    [Abstract] [Full Text] [Related]

  • 19. Copper selenide (Cu3Se2 and Cu2-xSe) thin films: electrochemical deposition and electrocatalytic application in quantum dot-sensitized solar cells.
    Zhou R, Huang Y, Zhou J, Niu H, Wan L, Li Y, Xu J, Xu J.
    Dalton Trans; 2018 Nov 27; 47(46):16587-16595. PubMed ID: 30417916
    [Abstract] [Full Text] [Related]

  • 20. A microwave synthesized CuxS and graphene oxide nanoribbon composite as a highly efficient counter electrode for quantum dot sensitized solar cells.
    Ghosh D, Halder G, Sahasrabudhe A, Bhattacharyya S.
    Nanoscale; 2016 May 19; 8(20):10632-41. PubMed ID: 27146800
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.