These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 30919349
1. Detection of β-Arrestin-Mediated G Protein-Coupled Receptor Ubiquitination Using BRET. Nagi K, Shenoy SK. Methods Mol Biol; 2019; 1957():93-104. PubMed ID: 30919349 [Abstract] [Full Text] [Related]
2. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET. Cao Y, Namkung Y, Laporte SA. Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346 [Abstract] [Full Text] [Related]
3. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Namkung Y, Le Gouill C, Lukashova V, Kobayashi H, Hogue M, Khoury E, Song M, Bouvier M, Laporte SA. Nat Commun; 2016 Jul 11; 7():12178. PubMed ID: 27397672 [Abstract] [Full Text] [Related]
4. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins. Bedini A. Methods Mol Biol; 2021 Jul 11; 2201():45-58. PubMed ID: 32975788 [Abstract] [Full Text] [Related]
5. Measuring Recruitment of β-Arrestin to G Protein-Coupled Heterodimers Using Bioluminescence Resonance Energy Transfer. Fillion D, Devost D, Hébert TE. Methods Mol Biol; 2019 Jul 11; 1957():83-91. PubMed ID: 30919348 [Abstract] [Full Text] [Related]
6. Regulation of G Protein-Coupled Receptors by Ubiquitination. Skieterska K, Rondou P, Van Craenenbroeck K. Int J Mol Sci; 2017 Apr 27; 18(5):. PubMed ID: 28448471 [Abstract] [Full Text] [Related]
8. Bioluminescence resonance energy transfer (BRET) to detect the interactions between kappa opioid receptor and non visual arrestins. Bedini A. Methods Mol Biol; 2015 Apr 27; 1230():115-28. PubMed ID: 25293320 [Abstract] [Full Text] [Related]
9. BRET approaches to characterize dopamine and TAAR1 receptor pharmacology and signaling. Espinoza S, Masri B, Salahpour A, Gainetdinov RR. Methods Mol Biol; 2013 Apr 27; 964():107-22. PubMed ID: 23296781 [Abstract] [Full Text] [Related]
11. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Namkung Y, LeGouill C, Kumar S, Cao Y, Teixeira LB, Lukasheva V, Giubilaro J, Simões SC, Longpré JM, Devost D, Hébert TE, Piñeyro G, Leduc R, Costa-Neto CM, Bouvier M, Laporte SA. Sci Signal; 2018 Dec 04; 11(559):. PubMed ID: 30514808 [Abstract] [Full Text] [Related]
12. Agonist-induced formation of unproductive receptor-G12 complexes. Okashah N, Wright SC, Kawakami K, Mathiasen S, Zhou J, Lu S, Javitch JA, Inoue A, Bouvier M, Lambert NA. Proc Natl Acad Sci U S A; 2020 Sep 01; 117(35):21723-21730. PubMed ID: 32817560 [Abstract] [Full Text] [Related]
13. Regulation of GPCR Trafficking by Ubiquitin. Kennedy JE, Marchese A. Prog Mol Biol Transl Sci; 2015 Sep 01; 132():15-38. PubMed ID: 26055053 [Abstract] [Full Text] [Related]
14. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Yun Y, Yoon HJ, Jeong Y, Choi Y, Jang S, Chung KY, Lee HH. Proc Natl Acad Sci U S A; 2023 Jul 11; 120(28):e2301934120. PubMed ID: 37399373 [Abstract] [Full Text] [Related]
15. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors. Ma X, Leurs R, Vischer HF. Methods Mol Biol; 2021 Jul 11; 2268():233-248. PubMed ID: 34085273 [Abstract] [Full Text] [Related]
17. Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology. Kocan M, Pfleger KD. Methods Mol Biol; 2009 Jul 11; 552():305-17. PubMed ID: 19513659 [Abstract] [Full Text] [Related]
18. Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors. Strungs EG, Luttrell LM, Lee MH. Methods Mol Biol; 2019 Jul 11; 1957():309-322. PubMed ID: 30919362 [Abstract] [Full Text] [Related]
19. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, Eiger DS, Warman A, Xiong X, Ma Z, Viswanathan G, Levitan IM, Rochelle LK, Staus DP, Snyder JC, Kahsai AW, Caron MG, Rajagopal S. Science; 2021 Mar 12; 371(6534):. PubMed ID: 33479120 [Abstract] [Full Text] [Related]
20. Heterologous phosphorylation-induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. Tóth AD, Prokop S, Gyombolai P, Várnai P, Balla A, Gurevich VV, Hunyady L, Turu G. J Biol Chem; 2018 Jan 19; 293(3):876-892. PubMed ID: 29146594 [Abstract] [Full Text] [Related] Page: [Next] [New Search]