These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 30926731

  • 1. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation.
    Xiong Y, Mason OU, Lowe A, Zhou C, Chen G, Tang Y.
    Appl Environ Microbiol; 2019 Jun 01; 85(11):. PubMed ID: 30926731
    [Abstract] [Full Text] [Related]

  • 2. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18.
    Wang P, Li F, Wang W, Wang R, Yang Y, Cui T, Liu N, Li M.
    Ecotoxicol Environ Saf; 2021 Jul 01; 217():112206. PubMed ID: 33866286
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses.
    Guan X, Liu F, Wang J, Li C, Zheng X.
    Water Sci Technol; 2018 Jan 01; 77(1-2):123-133. PubMed ID: 29339611
    [Abstract] [Full Text] [Related]

  • 4. Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate.
    Inoue D, Hisada K, Okumura T, Yabuki Y, Yoshida G, Kuroda M, Ike M.
    Biodegradation; 2020 Apr 01; 31(1-2):23-34. PubMed ID: 31520343
    [Abstract] [Full Text] [Related]

  • 5. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478.
    Masuda H, McClay K, Steffan RJ, Zylstra GJ.
    J Mol Microbiol Biotechnol; 2012 Apr 01; 22(5):312-6. PubMed ID: 23147387
    [Abstract] [Full Text] [Related]

  • 6. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors.
    Ramalingam V, Cupples AM.
    Appl Microbiol Biotechnol; 2020 May 01; 104(9):4155-4170. PubMed ID: 32170385
    [Abstract] [Full Text] [Related]

  • 7. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M.
    Biodegradation; 2016 Nov 01; 27(4-6):277-286. PubMed ID: 27623820
    [Abstract] [Full Text] [Related]

  • 8. Pretreatment for potable reuse: Enhancing the biological removal of 1,4-dioxane from landfill leachate through cometabolism with tetrahydrofuran.
    Stohr H, Menon R, Griffin M, Sabo J, Martin M, Brazil B, Bott C.
    Water Environ Res; 2024 Aug 01; 96(8):e11108. PubMed ID: 39147604
    [Abstract] [Full Text] [Related]

  • 9. Biodegradation of 1,4-dioxane by a Flavobacterium.
    Sun B, Ko K, Ramsay JA.
    Biodegradation; 2011 Jun 01; 22(3):651-9. PubMed ID: 21110067
    [Abstract] [Full Text] [Related]

  • 10. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane degradation ability of activated sludge lacking prior exposure to 1,4-dioxane.
    Inoue D, Hisada K, Ike M.
    Water Sci Technol; 2022 Oct 01; 86(7):1707-1718. PubMed ID: 36240306
    [Abstract] [Full Text] [Related]

  • 11. Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478.
    Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ.
    Appl Environ Microbiol; 2006 Aug 01; 72(8):5218-24. PubMed ID: 16885268
    [Abstract] [Full Text] [Related]

  • 12. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia.
    Xiong Y, Mason OU, Lowe A, Zhang Z, Zhou C, Chen G, Villalonga MJ, Tang Y.
    Biodegradation; 2020 Jun 01; 31(3):171-182. PubMed ID: 32361902
    [Abstract] [Full Text] [Related]

  • 13. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ, Freedman DL.
    J Hazard Mater; 2018 May 15; 350():180-188. PubMed ID: 29477886
    [Abstract] [Full Text] [Related]

  • 14. Mineralization of 1,4-dioxane in the presence of a structural analog.
    Zenker MJ, Borden RC, Barlaz MA.
    Biodegradation; 2000 May 15; 11(4):239-46. PubMed ID: 11432582
    [Abstract] [Full Text] [Related]

  • 15. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1.
    Huang H, Wu H, Qi M, Wang H, Lu Z.
    Microbiol Spectr; 2023 Jun 15; 11(3):e0454122. PubMed ID: 37125924
    [Abstract] [Full Text] [Related]

  • 16. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes.
    He Y, Mathieu J, da Silva MLB, Li M, Alvarez PJJ.
    Microb Biotechnol; 2018 Jan 15; 11(1):189-198. PubMed ID: 28984418
    [Abstract] [Full Text] [Related]

  • 17. Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil.
    Tang Y, Wang M, Lee CS, Venkatesan AK, Mao X.
    Appl Microbiol Biotechnol; 2023 Feb 15; 107(2-3):955-969. PubMed ID: 36625913
    [Abstract] [Full Text] [Related]

  • 18. Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species.
    Sales CM, Grostern A, Parales JV, Parales RE, Alvarez-Cohen L.
    Appl Environ Microbiol; 2013 Dec 15; 79(24):7702-8. PubMed ID: 24096414
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V, Cupples AM.
    Appl Microbiol Biotechnol; 2020 Mar 15; 104(5):2255-2269. PubMed ID: 31956944
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.