These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


104 related items for PubMed ID: 30945026

  • 1. Epigenetic modification of ESP, encoding a putative long noncoding RNA, affects panicle architecture in rice.
    Luan X, Liu S, Ke S, Dai H, Xie XM, Hsieh TF, Zhang XQ.
    Rice (N Y); 2019 Apr 03; 12(1):20. PubMed ID: 30945026
    [Abstract] [Full Text] [Related]

  • 2. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice.
    Zhang X, Sun J, Cao X, Song X.
    Plant Physiol; 2015 Nov 03; 169(3):2118-28. PubMed ID: 26351308
    [Abstract] [Full Text] [Related]

  • 3. An epiallele of rice AK1 affects photosynthetic capacity.
    Wei X, Song X, Wei L, Tang S, Sun J, Hu P, Cao X.
    J Integr Plant Biol; 2017 Mar 03; 59(3):158-163. PubMed ID: 28059476
    [Abstract] [Full Text] [Related]

  • 4. Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the diversity of the panicle trait in high-yielding japonica rice varieties in northern China.
    Zhao M, Sun J, Xiao Z, Cheng F, Xu H, Tang L, Chen W, Xu Z, Xu Q.
    Breed Sci; 2016 Sep 03; 66(4):599-605. PubMed ID: 27795685
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits.
    Ta KN, Khong NG, Ha TL, Nguyen DT, Mai DC, Hoang TG, Phung TPN, Bourrie I, Courtois B, Tran TTH, Dinh BY, LA TN, DO NV, Lebrun M, Gantet P, Jouannic S.
    BMC Plant Biol; 2018 Nov 14; 18(1):282. PubMed ID: 30428844
    [Abstract] [Full Text] [Related]

  • 7. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation.
    Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C.
    Cell Res; 2010 Jul 14; 20(7):838-49. PubMed ID: 20502443
    [Abstract] [Full Text] [Related]

  • 8. Will epigenetics be a key player in crop breeding?
    Tonosaki K, Fujimoto R, Dennis ES, Raboy V, Osabe K.
    Front Plant Sci; 2022 Jul 14; 13():958350. PubMed ID: 36247549
    [Abstract] [Full Text] [Related]

  • 9. Combining Image Analysis, Genome Wide Association Studies and Different Field Trials to Reveal Stable Genetic Regions Related to Panicle Architecture and the Number of Spikelets per Panicle in Rice.
    Rebolledo MC, Peña AL, Duitama J, Cruz DF, Dingkuhn M, Grenier C, Tohme J.
    Front Plant Sci; 2016 Jul 14; 7():1384. PubMed ID: 27703460
    [Abstract] [Full Text] [Related]

  • 10. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice.
    Li M, Tang D, Wang K, Wu X, Lu L, Yu H, Gu M, Yan C, Cheng Z.
    Plant Biotechnol J; 2011 Dec 14; 9(9):1002-13. PubMed ID: 21447055
    [Abstract] [Full Text] [Related]

  • 11. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice.
    Wu Y, Fu Y, Zhao S, Gu P, Zhu Z, Sun C, Tan L.
    Plant Biotechnol J; 2016 Jan 14; 14(1):377-86. PubMed ID: 25923523
    [Abstract] [Full Text] [Related]

  • 12. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice.
    Jang S, Lee Y, Lee G, Seo J, Lee D, Yu Y, Chin JH, Koh HJ.
    BMC Genet; 2018 Jan 15; 19(1):5. PubMed ID: 29334899
    [Abstract] [Full Text] [Related]

  • 13. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice.
    Xu H, Zhao M, Zhang Q, Xu Z, Xu Q.
    Breed Sci; 2016 Dec 15; 66(5):659-667. PubMed ID: 28163581
    [Abstract] [Full Text] [Related]

  • 14. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice.
    Huang Y, Bai X, Luo M, Xing Y.
    J Integr Plant Biol; 2019 Sep 15; 61(9):987-999. PubMed ID: 30302902
    [Abstract] [Full Text] [Related]

  • 15. Epigenetic Mutation in a Tubulin-Folding Cofactor B (ZmTFCB) Gene Arrests Kernel Development in Maize.
    Guo Y, Chen Y, Zhang J, Li J, Fan K, Chen R, Liu Y, Zheng J, Fu J, Gu R, Wang G, Cui Y, Du X, Wang J.
    Plant Cell Physiol; 2022 Aug 17; 63(8):1156-1167. PubMed ID: 35771678
    [Abstract] [Full Text] [Related]

  • 16. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.
    Chen J, Gao H, Zheng XM, Jin M, Weng JF, Ma J, Ren Y, Zhou K, Wang Q, Wang J, Wang JL, Zhang X, Cheng Z, Wu C, Wang H, Wan JM.
    Plant J; 2015 Aug 17; 83(3):427-38. PubMed ID: 26043067
    [Abstract] [Full Text] [Related]

  • 17. Novel Imaging Techniques to Analyze Panicle Architecture.
    Pasion E, Aguila R, Sreenivasulu N, Anacleto R.
    Methods Mol Biol; 2019 Aug 17; 1892():75-88. PubMed ID: 30397800
    [Abstract] [Full Text] [Related]

  • 18. Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.).
    Ke S, Liu XJ, Luan X, Yang W, Zhu H, Liu G, Zhang G, Wang S.
    Gene; 2018 Oct 30; 675():285-300. PubMed ID: 29969697
    [Abstract] [Full Text] [Related]

  • 19. The rice pds1 locus genetically interacts with partner to cause panicle exsertion defects and ectopic tillers in spikelets.
    Jiang Q, Zeng Y, Yu B, Cen W, Lu S, Jia P, Wang X, Qin B, Cai Z, Luo J.
    BMC Plant Biol; 2019 May 15; 19(1):200. PubMed ID: 31092192
    [Abstract] [Full Text] [Related]

  • 20. [Genetic analysis of dense and erect panicle 2 allele DEP2-1388 and its application in hybrid rice breeding].
    Hu YG, Guo LA, Yang GT, Qin P, Fan CL, Peng YL, Yan W, He H, Li SG.
    Yi Chuan; 2016 Jan 15; 38(1):72-81. PubMed ID: 26787525
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.