These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 30947041

  • 1. Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study.
    van Gendt MJ, Briaire JJ, Frijns JHM.
    Hear Res; 2019 Jun; 377():167-178. PubMed ID: 30947041
    [Abstract] [Full Text] [Related]

  • 2. Effect of stimulus level on the temporal response properties of the auditory nerve in cochlear implants.
    Hughes ML, Laurello SA.
    Hear Res; 2017 Aug; 351():116-129. PubMed ID: 28633960
    [Abstract] [Full Text] [Related]

  • 3. Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
    van Gendt MJ, Briaire JJ, Kalkman RK, Frijns JHM.
    Hear Res; 2017 Aug; 351():19-33. PubMed ID: 28625417
    [Abstract] [Full Text] [Related]

  • 4. The relation between auditory-nerve temporal responses and perceptual rate integration in cochlear implants.
    Hughes ML, Baudhuin JL, Goehring JL.
    Hear Res; 2014 Oct; 316():44-56. PubMed ID: 25093283
    [Abstract] [Full Text] [Related]

  • 5. What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients?
    Hughes ML, Choi S, Glickman E.
    Hear Res; 2018 Mar; 359():50-63. PubMed ID: 29307495
    [Abstract] [Full Text] [Related]

  • 6. Measuring temporal response properties of auditory nerve fibers in cochlear implant recipients.
    Tabibi S, Kegel A, Lai WK, Bruce IC, Dillier N.
    Hear Res; 2019 Sep 01; 380():187-196. PubMed ID: 31325737
    [Abstract] [Full Text] [Related]

  • 7. Facilitation and refractoriness of the electrically evoked compound action potential.
    Hey M, Müller-Deile J, Hessel H, Killian M.
    Hear Res; 2017 Nov 01; 355():14-22. PubMed ID: 28947082
    [Abstract] [Full Text] [Related]

  • 8. Electrically evoked compound action potential (ECAP) of the cochlear nerve in response to pulsatile electrical stimulation of the cochlea in the rat: effects of stimulation at high rates.
    Haenggeli A, Zhang JS, Vischer MW, Pelizzone M, Rouiller EM.
    Audiology; 1998 Nov 01; 37(6):353-71. PubMed ID: 9888192
    [Abstract] [Full Text] [Related]

  • 9. Recovery characteristics of the electrically stimulated auditory nerve in deafened guinea pigs: relation to neuronal status.
    Ramekers D, Versnel H, Strahl SB, Klis SF, Grolman W.
    Hear Res; 2015 Mar 01; 321():12-24. PubMed ID: 25582354
    [Abstract] [Full Text] [Related]

  • 10. A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation.
    van Gendt MJ, Briaire JJ, Kalkman RK, Frijns JHM.
    Hear Res; 2016 Nov 01; 341():130-143. PubMed ID: 27594099
    [Abstract] [Full Text] [Related]

  • 11. Temporal Response Properties of the Auditory Nerve in Implanted Children with Auditory Neuropathy Spectrum Disorder and Implanted Children with Sensorineural Hearing Loss.
    He S, Abbas PJ, Doyle DV, McFayden TC, Mulherin S.
    Ear Hear; 2016 Nov 01; 37(4):397-411. PubMed ID: 26655913
    [Abstract] [Full Text] [Related]

  • 12. Temporal response properties of the auditory nerve: data from human cochlear-implant recipients.
    Hughes ML, Castioni EE, Goehring JL, Baudhuin JL.
    Hear Res; 2012 Mar 01; 285(1-2):46-57. PubMed ID: 22326590
    [Abstract] [Full Text] [Related]

  • 13. Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway.
    Abbas PJ, Brown CJ.
    Hear Res; 2015 Apr 01; 322():67-76. PubMed ID: 25445817
    [Abstract] [Full Text] [Related]

  • 14. Assessing auditory nerve condition by tone decay in deaf subjects with a cochlear implant.
    Wasmann JA, van Eijl RHM, Versnel H, van Zanten GA.
    Int J Audiol; 2018 Nov 01; 57(11):864-871. PubMed ID: 30261773
    [Abstract] [Full Text] [Related]

  • 15. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs.
    Schvartz-Leyzac KC, Colesa DJ, Buswinka CJ, Swiderski DL, Raphael Y, Pfingst BE.
    Hear Res; 2019 Nov 01; 383():107809. PubMed ID: 31630082
    [Abstract] [Full Text] [Related]

  • 16. Auditory response to intracochlear electric stimuli following furosemide treatment.
    Hu N, Abbas PJ, Miller CA, Robinson BK, Nourski KV, Jeng FC, Abkes BA, Nichols JM.
    Hear Res; 2003 Nov 01; 185(1-2):77-89. PubMed ID: 14599695
    [Abstract] [Full Text] [Related]

  • 17. Unravelling the temporal properties of human eCAPs through an iterative deconvolution model.
    Dong Y, Briaire JJ, Biesheuvel JD, Stronks HC, Frijns JHM.
    Hear Res; 2020 Sep 15; 395():108037. PubMed ID: 32827881
    [Abstract] [Full Text] [Related]

  • 18. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD, Abbas PJ, Brown CJ.
    Ear Hear; 2017 Sep 15; 38(5):e268-e284. PubMed ID: 28207576
    [Abstract] [Full Text] [Related]

  • 19. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials.
    Dong Y, Briaire JJ, Stronks HC, Frijns JHM.
    Ear Hear; 2017 Sep 15; 44(2):276-286. PubMed ID: 36253905
    [Abstract] [Full Text] [Related]

  • 20. Characteristics of the Adaptation Recovery Function of the Auditory Nerve and Its Association With Advanced Age in Postlingually Deafened Adult Cochlear Implant Users.
    He S, Skidmore J, Carter BL.
    Ear Hear; 2017 Sep 15; 43(5):1472-1486. PubMed ID: 35139051
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.