These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
204 related items for PubMed ID: 30952339
41. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions. Liu L, Guo D, Qiu G, Liu C, Ning Z. J Environ Manage; 2022 Sep 01; 317():115425. PubMed ID: 35751250 [Abstract] [Full Text] [Related]
42. Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chen M, Lu G, Guo C, Yang C, Wu J, Huang W, Yee N, Dang Z. Chemosphere; 2015 Jan 01; 119():734-743. PubMed ID: 25189685 [Abstract] [Full Text] [Related]
43. Release and fate of As mobilized via bio-oxidation of arsenopyrite in acid mine drainage: Importance of As/Fe/S speciation and As(III) immobilization. Chen HR, Zhang DR, Li Q, Nie ZY, Pakostova E. Water Res; 2022 Sep 01; 223():118957. PubMed ID: 35970106 [Abstract] [Full Text] [Related]
44. Assessment of the induced effect of selected iron hydroxysulfates biosynthesized using Acidithiobacillus ferrooxidans for biomineralization of acid mine drainage. Wang H, Guo Q, Guo Z, Luo H, Li H, Yang J, Song Y. Water Sci Technol; 2023 Apr 01; 87(8):1879-1892. PubMed ID: 37119161 [Abstract] [Full Text] [Related]
45. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China. Liu Q, Chen B, Haderlein S, Gopalakrishnan G, Zhou Y. Ecotoxicol Environ Saf; 2018 Jul 15; 155():50-58. PubMed ID: 29501982 [Abstract] [Full Text] [Related]
46. Geochemical behavior of an acid drainage system: the case of the Amarillo River, Famatina (La Rioja, Argentina). Lecomte KL, Maza SN, Collo G, Sarmiento AM, Depetris PJ. Environ Sci Pollut Res Int; 2017 Jan 15; 24(2):1630-1647. PubMed ID: 27796971 [Abstract] [Full Text] [Related]
47. Effects of adsorbed phosphate on jarosite reduction by a sulfate reducing bacterium and associated mineralogical transformation. Gao K, Hu Y, Guo C, Ke C, He C, Hao X, Lu G, Dang Z. Ecotoxicol Environ Saf; 2020 Oct 01; 202():110921. PubMed ID: 32800256 [Abstract] [Full Text] [Related]
48. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralization prior to lime neutralization. Jiang F, Lu X, Zeng L, Xue C, Yi X, Dang Z. Sci Total Environ; 2024 Jan 15; 908():168291. PubMed ID: 37944602 [Abstract] [Full Text] [Related]
49. Arsenic(V) removal behavior of schwertmannite synthesized by KMnO4 rapid oxidation with high adsorption capacity and Fe utilization. Cao Q, Chen C, Li K, Sun T, Shen Z, Jia J. Chemosphere; 2021 Feb 15; 264(Pt 1):128398. PubMed ID: 33007570 [Abstract] [Full Text] [Related]
50. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Kumpulainen S, von der Kammer F, Hofmann T. Water Res; 2008 Apr 15; 42(8-9):2051-60. PubMed ID: 18221768 [Abstract] [Full Text] [Related]
51. Microbial reduction of As(V)-loaded Schwertmannite by Desulfosporosinus meridiei. Zhang Y, Gao K, Dang Z, Huang W, Reinfelder JR, Ren Y. Sci Total Environ; 2021 Apr 10; 764():144279. PubMed ID: 33401041 [Abstract] [Full Text] [Related]
52. [Mineralogical characteristics of biogenic schwertmannite amended with different pretreatment methods and the effects on As(III) absorption]. Liang JR, Li ZY, Liu FW, Zhou LX. Huan Jing Ke Xue; 2012 Oct 10; 33(10):3606-12. PubMed ID: 23233995 [Abstract] [Full Text] [Related]
53. A novel arsenic immobilization strategy via a two-step process: Arsenic concentration from dilute solution using schwertmannite and immobilization in Ca-Fe-AsO4 compounds. Park I, Ryota T, Yuto T, Tabelin CB, Phengsaart T, Jeon S, Ito M, Hiroyoshi N. J Environ Manage; 2021 Oct 01; 295():113052. PubMed ID: 34147990 [Abstract] [Full Text] [Related]
54. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Cutting RS, Coker VS, Telling ND, Kimber RL, van der Laan G, Pattrick RA, Vaughan DJ, Arenholz E, Lloyd JR. Environ Sci Technol; 2012 Nov 20; 46(22):12591-9. PubMed ID: 23043215 [Abstract] [Full Text] [Related]
55. Iron(VI) and iron(V) oxidation of thiocyanate. Sharma VK, Burnett CR, O'Connor DB, Cabelli D. Environ Sci Technol; 2002 Oct 01; 36(19):4182-6. PubMed ID: 12380093 [Abstract] [Full Text] [Related]
56. Formation and transformation of schwertmannite in the classic Fenton process. Su X, Li X, Ma L, Fan J. J Environ Sci (China); 2019 Aug 01; 82():145-154. PubMed ID: 31133260 [Abstract] [Full Text] [Related]
57. Photocatalytic reduction of Cr(VI) by small molecular weight organic acids over schwertmannite. Jiang D, Li Y, Wu Y, Zhou P, Lan Y, Zhou L. Chemosphere; 2012 Oct 01; 89(7):832-7. PubMed ID: 22652441 [Abstract] [Full Text] [Related]
58. Effects of Fe(II) concentration on the biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans and the As(III) removal capacity of schwertmannite. Zhang J, Zhou JX, Ji YP, Bi WL, Liu FW. Environ Technol; 2023 Nov 01; 44(27):4147-4156. PubMed ID: 35634972 [Abstract] [Full Text] [Related]
59. Transformation of minerals and mobility of heavy metals during oxidative weathering of seafloor massive sulfide and their environmental significance. Hu S, Tao C, Liao S, Zhu C, Qiu Z. Sci Total Environ; 2022 May 01; 819():153091. PubMed ID: 35038518 [Abstract] [Full Text] [Related]
60. Sorption of arsenate(Ⅴ) to naturally occurring secondary iron minerals formed at different conditions: The relationship between sorption behavior and surface structure. Li H, Wang N, Xiao T, Zhang X, Wang J, Tang J, Kong Q, Fu C, Quan H. Chemosphere; 2021 Dec 01; 285():131525. PubMed ID: 34265703 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]