These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 30960311
1. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO₂ Dissolution. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2019 Feb 13; 11(2):. PubMed ID: 30960311 [Abstract] [Full Text] [Related]
2. Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2018 Mar 21; 10(4):. PubMed ID: 30966383 [Abstract] [Full Text] [Related]
3. The Effect of Microcellular Structure on the Dynamic Mechanical Thermal Properties of High-Performance Nanocomposite Foams Made of Graphene Nanoplatelets-Filled Polysulfone. Antunes M, Abbasi H, Velasco JI. Polymers (Basel); 2021 Jan 29; 13(3):. PubMed ID: 33573026 [Abstract] [Full Text] [Related]
4. Effects of Graphene Nanoplatelets and Cellular Structure on the Thermal Conductivity of Polysulfone Nanocomposite Foams. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2019 Dec 20; 12(1):. PubMed ID: 31877642 [Abstract] [Full Text] [Related]
5. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park CB. ACS Appl Mater Interfaces; 2018 Sep 12; 10(36):30752-30761. PubMed ID: 30124039 [Abstract] [Full Text] [Related]
6. Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone. Abbasi H, Antunes M, Velasco JI. Nanomaterials (Basel); 2020 Dec 04; 10(12):. PubMed ID: 33291598 [Abstract] [Full Text] [Related]
7. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng Wg. ACS Appl Mater Interfaces; 2013 Apr 10; 5(7):2677-84. PubMed ID: 23465462 [Abstract] [Full Text] [Related]
8. Mechanical, Crystallization, Rheological, and Supercritical CO2 Foaming Properties of Polybutylene Succinate Nanocomposites: Impact of Carbon Nanofiber Content. Chen Z, Yin X, Chen H, Fu X, Sun Y, Chen Q, Liu W, Shen X. Polymers (Basel); 2023 Dec 20; 16(1):. PubMed ID: 38201693 [Abstract] [Full Text] [Related]
9. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH. Nanotechnology; 2010 Mar 12; 21(10):105702. PubMed ID: 20154373 [Abstract] [Full Text] [Related]
10. Carbonization of Graphene-Doped Isocyanate-Based Polyimide Foams to Achieve Carbon Foams with Excellent Electromagnetic Interference Shielding Performance. Jing H, Miao Z, Zeng Z, Liu H, Zhou S, Zou H, Liang M. Materials (Basel); 2021 Dec 09; 14(24):. PubMed ID: 34947147 [Abstract] [Full Text] [Related]
11. Lightweight electromagnetic interference shielding poly(L-lactic acid)/poly(D-lactic acid)/carbon nanotubes composite foams prepared by supercritical CO2 foaming. Wu Y, Yu K, Zhang X, Hou J, Chen J. Int J Biol Macromol; 2022 Jun 15; 210():11-20. PubMed ID: 35525491 [Abstract] [Full Text] [Related]
12. Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior. Collado I, Jiménez-Suárez A, Vázquez-López A, Del Rosario G, Prolongo SG. Polymers (Basel); 2024 Apr 11; 16(8):. PubMed ID: 38674988 [Abstract] [Full Text] [Related]
13. Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Dul S, Ecco LG, Pegoretti A, Fambri L. Polymers (Basel); 2020 Jan 04; 12(1):. PubMed ID: 31947971 [Abstract] [Full Text] [Related]
14. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. Shen B, Zhai W, Tao M, Ling J, Zheng W. ACS Appl Mater Interfaces; 2013 Nov 13; 5(21):11383-91. PubMed ID: 24134429 [Abstract] [Full Text] [Related]
15. Characterization of carbon nanofibre-reinforced polypropylene foams. Antunes M, Velasco JI, Realinho V, Arencón D. J Nanosci Nanotechnol; 2010 Feb 13; 10(2):1241-50. PubMed ID: 20352783 [Abstract] [Full Text] [Related]
16. Fabrication of three-dimensional polyetherimide bead foams via supercritical CO2/ethanol co-foaming technology. Feng D, Li L, Wang Q. RSC Adv; 2019 Jan 25; 9(7):4072-4081. PubMed ID: 35518111 [Abstract] [Full Text] [Related]
17. Nanocomposites of Rigid Polyurethane Foam and Graphene Nanoplates Obtained by Exfoliation of Natural Graphite in Polymeric 4,4'-Diphenylmethane Diisocyanate. Shin SR, Lee DS. Nanomaterials (Basel); 2022 Feb 18; 12(4):. PubMed ID: 35215012 [Abstract] [Full Text] [Related]
18. An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. Qi Q, Ma L, Zhao B, Wang S, Liu X, Lei Y, Park CB. ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):36568-36577. PubMed ID: 32686398 [Abstract] [Full Text] [Related]
19. The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles. de Oliveira MM, Forsberg S, Selegård L, Carastan DJ. Polymers (Basel); 2021 Nov 26; 13(23):. PubMed ID: 34883631 [Abstract] [Full Text] [Related]
20. Fabrication and Characterization of Waste Wood Cellulose Fiber/Graphene Nanoplatelet Carbon Papers for Application as Electromagnetic Interference Shielding Materials. Park J, Kwac LK, Kim HG, Shin HK. Nanomaterials (Basel); 2021 Oct 28; 11(11):. PubMed ID: 34835643 [Abstract] [Full Text] [Related] Page: [Next] [New Search]