These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


376 related items for PubMed ID: 30965576

  • 1. Gold Nanoparticles for Qualitative Detection of Deltamethrin and Carbofuran Residues in Soil by Surface Enhanced Raman Scattering (SERS).
    He Y, Xiao S, Dong T, Nie P.
    Int J Mol Sci; 2019 Apr 08; 20(7):. PubMed ID: 30965576
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Gold Nanoparticles with Different Particle Sizes for the Quantitative Determination of Chlorpyrifos Residues in Soil by SERS.
    He Y, Xiao S, Dong T, Nie P.
    Int J Mol Sci; 2019 Jun 10; 20(11):. PubMed ID: 31185580
    [Abstract] [Full Text] [Related]

  • 4. Quantitative Determination of Thiabendazole in Soil Extracts by Surface-Enhanced Raman Spectroscopy.
    Nie P, Dong T, Xiao S, Lin L, He Y, Qu F.
    Molecules; 2018 Aug 05; 23(8):. PubMed ID: 30081585
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Quantification of deltamethrin residues in wheat by Ag@ZnO NFs-based surface-enhanced Raman spectroscopy coupling chemometric models.
    Jiao T, Mehedi Hassan M, Zhu J, Ali S, Ahmad W, Wang J, Lv C, Chen Q, Li H.
    Food Chem; 2021 Feb 01; 337():127652. PubMed ID: 32799158
    [Abstract] [Full Text] [Related]

  • 7. Facile and Sensitive Detection of Carbofuran Carbamate Pesticide in Rice and Soybean Using Coupling Reaction-based Surface-Enhanced Raman Scattering.
    Sukmanee T, Wongravee K, Ekgasit S, Thammacharoen C, Pienpinijtham P.
    Anal Sci; 2017 Feb 01; 33(1):89-94. PubMed ID: 28070083
    [Abstract] [Full Text] [Related]

  • 8. Detection and quantification of carbendazim in Oolong tea by surface-enhanced Raman spectroscopy and gold nanoparticle substrates.
    Chen X, Lin M, Sun L, Xu T, Lai K, Huang M, Lin H.
    Food Chem; 2019 Sep 30; 293():271-277. PubMed ID: 31151611
    [Abstract] [Full Text] [Related]

  • 9. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy.
    Dowgiallo AM, Guenther DA.
    J Agric Food Chem; 2019 Nov 20; 67(46):12642-12651. PubMed ID: 31188587
    [Abstract] [Full Text] [Related]

  • 10. Detection of carbofuran in fruits and vegetables by Raman spectroscopy combined with immunochromatography.
    Pei J, Jin Y, Ren C, Chen Y, Zou M, Qi X.
    Anal Methods; 2024 Jun 20; 16(24):3938-3948. PubMed ID: 38842108
    [Abstract] [Full Text] [Related]

  • 11. Synthesized Au NPs@silica composite as surface-enhanced Raman spectroscopy (SERS) substrate for fast sensing trace contaminant in milk.
    Xu Y, Kutsanedzie FYH, Hassan MM, Li H, Chen Q.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan 05; 206():405-412. PubMed ID: 30170175
    [Abstract] [Full Text] [Related]

  • 12. Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces.
    Jiao A, Dong X, Zhang H, Xu L, Tian Y, Liu X, Chen M.
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb 15; 209():241-247. PubMed ID: 30414572
    [Abstract] [Full Text] [Related]

  • 13. Flexible and Adhesive Surface Enhance Raman Scattering Active Tape for Rapid Detection of Pesticide Residues in Fruits and Vegetables.
    Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L.
    Anal Chem; 2016 Feb 16; 88(4):2149-55. PubMed ID: 26810698
    [Abstract] [Full Text] [Related]

  • 14. Fast and Low-Cost Surface-Enhanced Raman Scattering (SERS) Method for On-Site Detection of Flumetsulam in Wheat.
    Han M, Lu H, Zhang Z.
    Molecules; 2020 Oct 13; 25(20):. PubMed ID: 33066139
    [Abstract] [Full Text] [Related]

  • 15. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique.
    Yaseen T, Pu H, Sun DW.
    Talanta; 2019 May 01; 196():537-545. PubMed ID: 30683402
    [Abstract] [Full Text] [Related]

  • 16. Single-atom oxide-decorated AuNPs for universal enhancement in SERS detection of pesticide residues.
    Zhang Q, Chen B, Ma Q, Fang Z, Li S, He X, Wang Y, Qi X, Chen Q, Cai T, Zhang L, Zou M, Wang C, Ma Q.
    Anal Chim Acta; 2024 Nov 15; 1329():343192. PubMed ID: 39396282
    [Abstract] [Full Text] [Related]

  • 17. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB, Yin J, Zheng YM, Liu Q, Cheng XX, Luo FH.
    Anal Chem; 2014 Jul 01; 86(13):6262-7. PubMed ID: 24873535
    [Abstract] [Full Text] [Related]

  • 18. Development of cellulose Nanofiber-based substrates for rapid detection of ferbam in kale by Surface-enhanced Raman spectroscopy.
    Sun L, Yu Z, Alsammarraie FK, Lin MH, Kong F, Huang M, Lin M.
    Food Chem; 2021 Jun 15; 347():129023. PubMed ID: 33484959
    [Abstract] [Full Text] [Related]

  • 19. A novel paper rag as 'D-SERS' substrate for detection of pesticide residues at various peels.
    Zhu Y, Li M, Yu D, Yang L.
    Talanta; 2014 Oct 15; 128():117-24. PubMed ID: 25059138
    [Abstract] [Full Text] [Related]

  • 20. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.
    Hernández-Castillo MI, Zaca-Morán O, Zaca-Morán P, Orduña-Diaz A, Delgado-Macuil R, Rojas-López M.
    J Environ Sci Health B; 2015 Oct 15; 50(8):584-9. PubMed ID: 26065518
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.