These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 30966383
1. Effects of Carbon Nanotubes/Graphene Nanoplatelets Hybrid Systems on the Structure and Properties of Polyetherimide-Based Foams. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2018 Mar 21; 10(4):. PubMed ID: 30966383 [Abstract] [Full Text] [Related]
2. Polyetherimide Foams Filled with Low Content of Graphene Nanoplatelets Prepared by scCO₂ Dissolution. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2019 Feb 13; 11(2):. PubMed ID: 30960311 [Abstract] [Full Text] [Related]
3. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites. Kumar S, Sun LL, Caceres S, Li B, Wood W, Perugini A, Maguire RG, Zhong WH. Nanotechnology; 2010 Mar 12; 21(10):105702. PubMed ID: 20154373 [Abstract] [Full Text] [Related]
4. The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles. de Oliveira MM, Forsberg S, Selegård L, Carastan DJ. Polymers (Basel); 2021 Nov 26; 13(23):. PubMed ID: 34883631 [Abstract] [Full Text] [Related]
5. Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated via Supercritical-Fluid Treatment and Physical Foaming. Hamidinejad M, Zhao B, Zandieh A, Moghimian N, Filleter T, Park CB. ACS Appl Mater Interfaces; 2018 Sep 12; 10(36):30752-30761. PubMed ID: 30124039 [Abstract] [Full Text] [Related]
6. Graphene/Carbon Nanotube Hybrid Nanocomposites: Effect of Compression Molding and Fused Filament Fabrication on Properties. Dul S, Ecco LG, Pegoretti A, Fambri L. Polymers (Basel); 2020 Jan 04; 12(1):. PubMed ID: 31947971 [Abstract] [Full Text] [Related]
7. Effects of the Nanofillers on Physical Properties of Acrylonitrile-Butadiene-Styrene Nanocomposites: Comparison of Graphene Nanoplatelets and Multiwall Carbon Nanotubes. Dul S, Pegoretti A, Fambri L. Nanomaterials (Basel); 2018 Aug 29; 8(9):. PubMed ID: 30158474 [Abstract] [Full Text] [Related]
8. Effects of Graphene Nanoplatelets and Cellular Structure on the Thermal Conductivity of Polysulfone Nanocomposite Foams. Abbasi H, Antunes M, Velasco JI. Polymers (Basel); 2019 Dec 20; 12(1):. PubMed ID: 31877642 [Abstract] [Full Text] [Related]
9. Facile preparation of lightweight microcellular polyetherimide/graphene composite foams for electromagnetic interference shielding. Ling J, Zhai W, Feng W, Shen B, Zhang J, Zheng Wg. ACS Appl Mater Interfaces; 2013 Apr 10; 5(7):2677-84. PubMed ID: 23465462 [Abstract] [Full Text] [Related]
10. An Effective Design Strategy for the Sandwich Structure of PVDF/GNP-Ni-CNT Composites with Remarkable Electromagnetic Interference Shielding Effectiveness. Qi Q, Ma L, Zhao B, Wang S, Liu X, Lei Y, Park CB. ACS Appl Mater Interfaces; 2020 Aug 12; 12(32):36568-36577. PubMed ID: 32686398 [Abstract] [Full Text] [Related]
11. Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. Maiti S, Shrivastava NK, Suin S, Khatua BB. ACS Appl Mater Interfaces; 2013 Jun 12; 5(11):4712-24. PubMed ID: 23673318 [Abstract] [Full Text] [Related]
12. Bio-Based Eucommia ulmoides Gum Composites with High Electromagnetic Interference Shielding Performance. Kang H, Luo S, Du H, Han L, Li D, Li L, Fang Q. Polymers (Basel); 2022 Feb 28; 14(5):. PubMed ID: 35267802 [Abstract] [Full Text] [Related]
13. Electrically conductive epoxy nanocomposites with expanded graphite/carbon nanotube hybrid fillers prepared by direct hybridization. Yu L, Kang H, Lim YS, Lee CS, Shin K, Park JS, Han JH. J Nanosci Nanotechnol; 2014 Dec 28; 14(12):9139-42. PubMed ID: 25971025 [Abstract] [Full Text] [Related]
14. The Effect of Microcellular Structure on the Dynamic Mechanical Thermal Properties of High-Performance Nanocomposite Foams Made of Graphene Nanoplatelets-Filled Polysulfone. Antunes M, Abbasi H, Velasco JI. Polymers (Basel); 2021 Jan 29; 13(3):. PubMed ID: 33573026 [Abstract] [Full Text] [Related]
15. Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films. Zhao B, Zhao C, Li R, Hamidinejad SM, Park CB. ACS Appl Mater Interfaces; 2017 Jun 21; 9(24):20873-20884. PubMed ID: 28558470 [Abstract] [Full Text] [Related]
16. Electrical Properties and Strain Sensing Mechanisms in Hybrid Graphene Nanoplatelet/Carbon Nanotube Nanocomposites. Sánchez-Romate XF, Jiménez-Suárez A, Campo M, Ureña A, Prolongo SG. Sensors (Basel); 2021 Aug 17; 21(16):. PubMed ID: 34450972 [Abstract] [Full Text] [Related]
17. Electrical Conduction Behavior of High-Performance Microcellular Nanocomposites Made of Graphene Nanoplatelet-Filled Polysulfone. Abbasi H, Antunes M, Velasco JI. Nanomaterials (Basel); 2020 Dec 04; 10(12):. PubMed ID: 33291598 [Abstract] [Full Text] [Related]
18. Ultra-Sensitive Affordable Cementitious Composite with High Mechanical and Microstructural Performances by Hybrid CNT/GNP. Abedi M, Fangueiro R, Gomes Correia A. Materials (Basel); 2020 Aug 07; 13(16):. PubMed ID: 32784587 [Abstract] [Full Text] [Related]
19. Design, Development and Evaluation of Thermal Properties of Polysulphone-CNT/GNP Nanocomposites. Irshad HM, Hakeem AS, Raza K, Baroud TN, Ehsan MA, Ali S, Tahir MS. Nanomaterials (Basel); 2021 Aug 16; 11(8):. PubMed ID: 34443911 [Abstract] [Full Text] [Related]
20. Ultrasonication Influence on the Morphological Characteristics of Graphene Nanoplatelet Nanocomposites and Their Electrical and Electromagnetic Interference Shielding Behavior. Collado I, Jiménez-Suárez A, Vázquez-López A, Del Rosario G, Prolongo SG. Polymers (Basel); 2024 Apr 11; 16(8):. PubMed ID: 38674988 [Abstract] [Full Text] [Related] Page: [Next] [New Search]