These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
899 related items for PubMed ID: 30966870
1. Thermodynamic spectral and kinetic analysis of the removal of Cu(II) from aqueous solution by sodium carbonate treated rice husk. Acharya J, Kumar U, Meikap BC. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):801-809. PubMed ID: 30966870 [Abstract] [Full Text] [Related]
2. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass. Iftikhar AR, Bhatti HN, Hanif MA, Nadeem R. J Hazard Mater; 2009 Jan 30; 161(2-3):941-7. PubMed ID: 18508197 [Abstract] [Full Text] [Related]
3. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations. Akhtar M, Bhanger MI, Iqbal S, Hasany SM. J Hazard Mater; 2006 Jan 16; 128(1):44-52. PubMed ID: 16126338 [Abstract] [Full Text] [Related]
4. The sorption of lead(II) ions on rice husk ash. Naiya TK, Bhattacharya AK, Mandal S, Das SK. J Hazard Mater; 2009 Apr 30; 163(2-3):1254-64. PubMed ID: 18783880 [Abstract] [Full Text] [Related]
5. Characterization of H3PO4-treated rice husk adsorbent and adsorption of copper(II) from aqueous solution. Zhang Y, Zheng R, Zhao J, Ma F, Zhang Y, Meng Q. Biomed Res Int; 2014 Apr 30; 2014():496878. PubMed ID: 24678507 [Abstract] [Full Text] [Related]
6. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis. Jayakumar R, Rajasimman M, Karthikeyan C. Ecotoxicol Environ Saf; 2015 Nov 30; 121():199-210. PubMed ID: 25866206 [Abstract] [Full Text] [Related]
7. Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Sari A, Tuzen M, Citak D, Soylak M. J Hazard Mater; 2007 Sep 05; 148(1-2):387-94. PubMed ID: 17386972 [Abstract] [Full Text] [Related]
9. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles. Liu Q, Liu Q, Ruan Z, Chang X, Yao J. Ecotoxicol Environ Saf; 2016 Jul 05; 129():273-81. PubMed ID: 27057995 [Abstract] [Full Text] [Related]
10. Kinetic and thermodynamic studies of the Co(II) and Ni(II) ions removal from aqueous solutions by Ca-Mg phosphates. Ivanets AI, Srivastava V, Kitikova NV, Shashkova IL, Sillanpää M. Chemosphere; 2017 Mar 05; 171():348-354. PubMed ID: 28038418 [Abstract] [Full Text] [Related]
11. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study. Han R, Zou W, Zhang Z, Shi J, Yang J. J Hazard Mater; 2006 Sep 01; 137(1):384-95. PubMed ID: 16603312 [Abstract] [Full Text] [Related]
12. Management of agricultural waste for removal of heavy metals from aqueous solution: adsorption behaviors, adsorption mechanisms, environmental protection, and techno-economic analysis. Elhafez SE, Hamad HA, Zaatout AA, Malash GF. Environ Sci Pollut Res Int; 2017 Jan 01; 24(2):1397-1415. PubMed ID: 27783243 [Abstract] [Full Text] [Related]
13. Removal of Cu(II) from aqueous solutions using chemically modified chitosan. Kannamba B, Reddy KL, AppaRao BV. J Hazard Mater; 2010 Mar 15; 175(1-3):939-48. PubMed ID: 19942344 [Abstract] [Full Text] [Related]
14. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. Ghassabzadeh H, Mohadespour A, Torab-Mostaedi M, Zaheri P, Maragheh MG, Taheri H. J Hazard Mater; 2010 May 15; 177(1-3):950-5. PubMed ID: 20096505 [Abstract] [Full Text] [Related]
15. Biosorption of Cu(II) ions onto the litter of natural trembling poplar forest. Dundar M, Nuhoglu C, Nuhoglu Y. J Hazard Mater; 2008 Feb 28; 151(1):86-95. PubMed ID: 17601663 [Abstract] [Full Text] [Related]
16. Thermodynamic, kinetic, and equilibrium studies of Cu(II), Cd(II), Ni(II), and Pb(II) ion biosorption onto treated Ageratum conyzoid biomass. Vishwakarma MC, Joshi HK, Tiwari P, Bhandari NS, Joshi SK. Int J Biol Macromol; 2024 Aug 28; 274(Pt 2):133001. PubMed ID: 38897497 [Abstract] [Full Text] [Related]
17. Co-modified MCM-41 as an effective adsorbent for levofloxacin removal from aqueous solution: optimization of process parameters, isotherm, and thermodynamic studies. Jin T, Yuan W, Xue Y, Wei H, Zhang C, Li K. Environ Sci Pollut Res Int; 2017 Feb 28; 24(6):5238-5248. PubMed ID: 28004365 [Abstract] [Full Text] [Related]
18. Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin--a biosorbent. Mohan D, Pittman CU, Steele PH. J Colloid Interface Sci; 2006 May 15; 297(2):489-504. PubMed ID: 16375914 [Abstract] [Full Text] [Related]
19. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO, Baek MH, Kim DS. J Hazard Mater; 2009 Jul 15; 166(1):538-46. PubMed ID: 19131158 [Abstract] [Full Text] [Related]
20. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Singha B, Das SK. Colloids Surf B Biointerfaces; 2013 Jul 01; 107():97-106. PubMed ID: 23466548 [Abstract] [Full Text] [Related] Page: [Next] [New Search]