These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 30976803

  • 1. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P, Bergenholm D, Börlin CS, Liu G, Nielsen J.
    Nucleic Acids Res; 2019 Jun 04; 47(10):4986-5000. PubMed ID: 30976803
    [Abstract] [Full Text] [Related]

  • 2. Mapping functional transcription factor networks from gene expression data.
    Haynes BC, Maier EJ, Kramer MH, Wang PI, Brown H, Brent MR.
    Genome Res; 2013 Aug 04; 23(8):1319-28. PubMed ID: 23636944
    [Abstract] [Full Text] [Related]

  • 3. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights.
    Gordân R, Murphy KF, McCord RP, Zhu C, Vedenko A, Bulyk ML.
    Genome Biol; 2011 Dec 21; 12(12):R125. PubMed ID: 22189060
    [Abstract] [Full Text] [Related]

  • 4. The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor.
    Gasmi N, Jacques PE, Klimova N, Guo X, Ricciardi A, Robert F, Turcotte B.
    Genetics; 2014 Oct 21; 198(2):547-60. PubMed ID: 25123508
    [Abstract] [Full Text] [Related]

  • 5. Gln3-Gcn4 hybrid transcriptional activator determines catabolic and biosynthetic gene expression in the yeast Saccharomyces cerevisiae.
    Hernández H, Aranda C, Riego L, González A.
    Biochem Biophys Res Commun; 2011 Jan 21; 404(3):859-64. PubMed ID: 21184740
    [Abstract] [Full Text] [Related]

  • 6. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H, Wang YH, Wu WS.
    Gene; 2011 Oct 10; 485(2):172-6. PubMed ID: 21703335
    [Abstract] [Full Text] [Related]

  • 7. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ, Jhu MH, Chiu CC, Huang YM, Wu WS.
    BMC Syst Biol; 2014 Oct 10; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [Abstract] [Full Text] [Related]

  • 8. Sumoylation of DNA-bound transcription factor Sko1 prevents its association with nontarget promoters.
    Sri Theivakadadcham VS, Bergey BG, Rosonina E.
    PLoS Genet; 2019 Feb 10; 15(2):e1007991. PubMed ID: 30763307
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A, Lu XJ, Zakrzewska A, Klis FM, Bussemaker HJ.
    PLoS One; 2008 Sep 03; 3(9):e3112. PubMed ID: 18769540
    [Abstract] [Full Text] [Related]

  • 12. Gcn4 Binding in Coding Regions Can Activate Internal and Canonical 5' Promoters in Yeast.
    Rawal Y, Chereji RV, Valabhoju V, Qiu H, Ocampo J, Clark DJ, Hinnebusch AG.
    Mol Cell; 2018 Apr 19; 70(2):297-311.e4. PubMed ID: 29628310
    [Abstract] [Full Text] [Related]

  • 13. Mediator, TATA-binding protein, and RNA polymerase II contribute to low histone occupancy at active gene promoters in yeast.
    Ansari SA, Paul E, Sommer S, Lieleg C, He Q, Daly AZ, Rode KA, Barber WT, Ellis LC, LaPorta E, Orzechowski AM, Taylor E, Reeb T, Wong J, Korber P, Morse RH.
    J Biol Chem; 2014 May 23; 289(21):14981-95. PubMed ID: 24727477
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Characterizing the roles of Met31 and Met32 in coordinating Met4-activated transcription in the absence of Met30.
    Carrillo E, Ben-Ari G, Wildenhain J, Tyers M, Grammentz D, Lee TA.
    Mol Biol Cell; 2012 May 23; 23(10):1928-42. PubMed ID: 22438580
    [Abstract] [Full Text] [Related]

  • 16. Genomewide identification of Sko1 target promoters reveals a regulatory network that operates in response to osmotic stress in Saccharomyces cerevisiae.
    Proft M, Gibbons FD, Copeland M, Roth FP, Struhl K.
    Eukaryot Cell; 2005 Aug 23; 4(8):1343-52. PubMed ID: 16087739
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The transcription factor GCN4 regulates PHM8 and alters triacylglycerol metabolism in Saccharomyces cerevisiae.
    Yadav KK, Rajasekharan R.
    Curr Genet; 2016 Nov 23; 62(4):841-851. PubMed ID: 26979516
    [Abstract] [Full Text] [Related]

  • 19. Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response.
    Patil CK, Li H, Walter P.
    PLoS Biol; 2004 Aug 23; 2(8):E246. PubMed ID: 15314660
    [Abstract] [Full Text] [Related]

  • 20. Dissection of combinatorial control by the Met4 transcriptional complex.
    Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M.
    Mol Biol Cell; 2010 Feb 01; 21(3):456-69. PubMed ID: 19940020
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.